java 会默认做的那些事

简介:

这是一个基础类的源码文件

public class Demo {
    public static void main(String[] args) {
        System.out.println("HelloWorld!");
    }
}

反编译过后的

# javap -c Demo
Compiled from "Demo.java"
public class Demo extends java.lang.Object{
public Demo();
  Code:
   0:   aload_0
   1:   invokespecial   #1; //Method java/lang/Object."<init>":()V
   4:   return

public static void main(java.lang.String[]);
  Code:
   0:   getstatic       #2; //Field java/lang/System.out:Ljava/io/PrintStream;
   3:   ldc     #3; //String helloWorld!
   5:   invokevirtual   #4; //Method java/io/PrintStream.println:(Ljava/lang/String;)V
   8:   return

}

反编译过后可以看到

  • 自定义一个类会默认继承 java.lang.Object, 这也是 Object 利用多态能接受任意对象的原因
  • 一个类中会默认有一个构造方法,他的默认实现是调用到父类的空构造方法
  • 当你自定义了一个构造方法后jdk就不会默认给你加空构造了
  • 这里要注意构造方法中super(...)一定是第一行代码,就算你不写super(...)她会默认调用父类的空构造

接下来在来看一段源码

import java.util.Arrays;
import java.util.List;

public class Demo {
    public static void main(String[] args) {
        List<String> list = Arrays.asList("Java", "JavaME", "JavaSE", "JavaEE");
        String data = "";
        for (String s : list) {
            data += s + ",";
        }
        System.out.println(data);
    }
}

反编译后的结果为

# javap -c Demo
Compiled from "Demo.java"
public class Demo extends java.lang.Object{
public Demo();
  Code:
   0:   aload_0
   1:   invokespecial   #1; //Method java/lang/Object."<init>":()V
   4:   return

public static void main(java.lang.String[]);
  Code:
   0:   iconst_4
   1:   anewarray       #2; //class java/lang/String
   4:   dup
   5:   iconst_0
   6:   ldc     #3; //String Java
   8:   aastore
   9:   dup
   10:  iconst_1
   11:  ldc     #4; //String JavaME
   13:  aastore
   14:  dup
   15:  iconst_2
   16:  ldc     #5; //String JavaSE
   18:  aastore
   19:  dup
   20:  iconst_3
   21:  ldc     #6; //String JavaEE
   23:  aastore
   24:  invokestatic    #7; //Method java/util/Arrays.asList:([Ljava/lang/Object;)Ljava/util/List;
   27:  astore_1
   28:  ldc     #8; //String
   30:  astore_2
   31:  aload_1
   32:  invokeinterface #9,  1; //InterfaceMethod java/util/List.iterator:()Ljava/util/Iterator;
   37:  astore_3
   38:  aload_3
   39:  invokeinterface #10,  1; //InterfaceMethod java/util/Iterator.hasNext:()Z
   44:  ifeq    86
   47:  aload_3
   48:  invokeinterface #11,  1; //InterfaceMethod java/util/Iterator.next:()Ljava/lang/Object;
   53:  checkcast       #2; //class java/lang/String
   56:  astore  4
   58:  new     #12; //class java/lang/StringBuilder
   61:  dup
   62:  invokespecial   #13; //Method java/lang/StringBuilder."<init>":()V
   65:  aload_2
   66:  invokevirtual   #14; //Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
   69:  aload   4
   71:  invokevirtual   #14; //Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
   74:  ldc     #15; //String ,
   76:  invokevirtual   #14; //Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
   79:  invokevirtual   #16; //Method java/lang/StringBuilder.toString:()Ljava/lang/String;
   82:  astore_2
   83:  goto    38
   86:  getstatic       #17; //Field java/lang/System.out:Ljava/io/PrintStream;
   89:  aload_2
   90:  invokevirtual   #18; //Method java/io/PrintStream.println:(Ljava/lang/String;)V
   93:  return

}

从反编译中能看出

  • 关于字符串拼接

    • 在少量字符串拼接时jdk会默认给我们转成StringBuilder来实现,这也是为什么少量字符串拼接可以使用String对象的原因
  • 在使用 for (String s : list) {}

    • 会默认调用到java.util.Iterator接口中的方法
    • 我们自定义类如果想使用这种迭代方式就需要满足一下两种条件

      • 是集合架构中的一员
      • 自定义实现Iterator中的方法

自定义枚举类

public enum Demo {

    SUCCESS(0, "成功"),
    ERROR(1, "失败");

    private Integer code;
    private String msg;

    Demo(Integer code, String msg) {
        this.code = code;
        this.msg = msg;
    }

}

反编译枚举后可以看到

# javap Demo
Compiled from "Demo.java"
public final class Demo extends java.lang.Enum{
    public static final Demo SUCCESS;
    public static final Demo ERROR;
    public static final Demo[] values();
    public static Demo valueOf(java.lang.String);
    static {};
}

从反编译结果中可以看到

  • 枚举类实际上是一个加了 final class 他会默认继承自java.lang.Enum
  • 每一个枚举类型都会转成 public static final 的对象

自定义注解

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface Demo {

    String value();

}

反编译的结果

# javap Demo
Compiled from "Demo.java"
public interface Demo extends java.lang.annotation.Annotation{
    public abstract java.lang.String value();
}

从反编译结果中可以看出

  • 可以看出注解会默认继承java.lang.annotation.Annotation
  • 一个属性就是一个抽象方法

还有一些常识

  • Java 会默认导入 java.lang

    • 这个自动导入使得我们在使用 Integer,Object,System 等类的时候不需要手动导包
  • System.out.println(); 的时候会默认调用到对象中的 toString(); 方法
  • HashSet在存储时会默认调用到对象的hashCode()::equals()方法

    • HashSet 在判断元素重复时借助了hashCode()的hash算法来筛选掉一批不重复的数据
    • 在hash值相等的时候在借助equals()判断是否重复如果重复就不录入了
    • 为什么要使用到两个方法来判断是否重复这里是hash算法的一个特点了, 在HashMap中如果hash值相等值不相等就会在hash表中形成一个hash链
  • TreeSet在存储时,要求元素实现Comparable接口

    • TreeSet使用了树状结构需要使用到 java.lang.Comparable#compareTo 方法的返回值
    • 通过返回来决定元素是否重复: [0元素重复,<0左子树,>0右子树]

Integer 的自动封装和catch

先来看一段源码代码

Integer val1 = 1;
Integer val2 = 1;
System.out.println(val1 == val2);

Integer val3 = 996;
Integer val4 = 996;
System.out.println(val3 == val4);

反编译结果

# javap -c Demo
Compiled from "Demo.java"
public class Demo {
  public Demo();
    Code:
       0: aload_0
       1: invokespecial #1                  // Method java/lang/Object."<init>":()V
       4: return

  public static void main(java.lang.String[]);
    Code:
       0: iconst_1
       1: invokestatic  #2                  // Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
       4: astore_1
       5: iconst_1
       6: invokestatic  #2                  // Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
       9: astore_2
      10: getstatic     #3                  // Field java/lang/System.out:Ljava/io/PrintStream;
      13: aload_1
      14: aload_2
      15: if_acmpne     22
      18: iconst_1
      19: goto          23
      22: iconst_0
      23: invokevirtual #4                  // Method java/io/PrintStream.println:(Z)V
      26: sipush        996
      29: invokestatic  #2                  // Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
      32: astore_3
      33: sipush        996
      36: invokestatic  #2                  // Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
      39: astore        4
      41: getstatic     #3                  // Field java/lang/System.out:Ljava/io/PrintStream;
      44: aload_3
      45: aload         4
      47: if_acmpne     54
      50: iconst_1
      51: goto          55
      54: iconst_0
      55: invokevirtual #4                  // Method java/io/PrintStream.println:(Z)V
      58: return
}
  • 在Integer类型自动拆装箱实际上是使用了Integer.valueOf()方法
  • 我们可以通过了解 valueOf() 的源码来理解 Integer -128~127缓存

Integer.valueOf() 的实现

public static Integer valueOf(int i) {
    if (i >= IntegerCache.low && i <= IntegerCache.high)
        return IntegerCache.cache[i + (-IntegerCache.low)];
    return new Integer(i);
}

Integer缓存核心实现

private static class IntegerCache {
    static final int low = -128;
    static final int high;
    static final Integer cache[];

    static {
        // high value may be configured by property
        int h = 127;
        String integerCacheHighPropValue =
            sun.misc.VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
        if (integerCacheHighPropValue != null) {
            try {
                int i = parseInt(integerCacheHighPropValue);
                i = Math.max(i, 127);
                // Maximum array size is Integer.MAX_VALUE
                h = Math.min(i, Integer.MAX_VALUE - (-low) -1);
            } catch( NumberFormatException nfe) {
                // If the property cannot be parsed into an int, ignore it.
            }
        }
        high = h;

        cache = new Integer[(high - low) + 1];
        int j = low;
        for(int k = 0; k < cache.length; k++)
            cache[k] = new Integer(j++);

        // range [-128, 127] must be interned (JLS7 5.1.7)
        assert IntegerCache.high >= 127;
    }

    private IntegerCache() {}
}

内部类访问变量时的隐式操作

public static void main(String[] args) {
    String str = "hello";
    new Transfer() {
        @Override
        void transfer() {
            System.out.println(str);
            str = "world!";
            System.out.println(str);
        }
    }.transfer();
}

public static abstract class Transfer {
    abstract void transfer();
}
  • 在案例中 String 类型的 str 实际上会隐式的给我们加上 final 修饰
目录
相关文章
|
4天前
|
安全 Java UED
Java中的多线程编程:从基础到实践
本文深入探讨了Java中的多线程编程,包括线程的创建、生命周期管理以及同步机制。通过实例展示了如何使用Thread类和Runnable接口来创建线程,讨论了线程安全问题及解决策略,如使用synchronized关键字和ReentrantLock类。文章还涵盖了线程间通信的方式,包括wait()、notify()和notifyAll()方法,以及如何避免死锁。此外,还介绍了高级并发工具如CountDownLatch和CyclicBarrier的使用方法。通过综合运用这些技术,可以有效提高多线程程序的性能和可靠性。
|
4天前
|
缓存 Java UED
Java中的多线程编程:从基础到实践
【10月更文挑战第13天】 Java作为一门跨平台的编程语言,其强大的多线程能力一直是其核心优势之一。本文将从最基础的概念讲起,逐步深入探讨Java多线程的实现方式及其应用场景,通过实例讲解帮助读者更好地理解和应用这一技术。
22 3
|
8天前
|
Java 调度 UED
深入理解Java中的多线程与并发机制
本文将详细探讨Java中多线程的概念、实现方式及并发机制,包括线程的生命周期、同步与锁机制以及高级并发工具。通过实例代码演示,帮助读者理解如何在Java中有效地处理多线程和并发问题,提高程序的性能和响应能力。
|
6天前
|
缓存 安全 Java
使用 Java 内存模型解决多线程中的数据竞争问题
【10月更文挑战第11天】在 Java 多线程编程中,数据竞争是一个常见问题。通过使用 `synchronized` 关键字、`volatile` 关键字、原子类、显式锁、避免共享可变数据、合理设计数据结构、遵循线程安全原则和使用线程池等方法,可以有效解决数据竞争问题,确保程序的正确性和稳定性。
13 2
|
7天前
|
存储 安全 Java
Java-如何保证线程安全?
【10月更文挑战第10天】
|
14天前
|
监控 Java Linux
Java 性能调优:调整 GC 线程以获得最佳结果
Java 性能调优:调整 GC 线程以获得最佳结果
52 11
|
8天前
|
Java
|
8天前
|
Java
【编程进阶知识】揭秘Java多线程:并发与顺序编程的奥秘
本文介绍了Java多线程编程的基础,通过对比顺序执行和并发执行的方式,展示了如何使用`run`方法和`start`方法来控制线程的执行模式。文章通过具体示例详细解析了两者的异同及应用场景,帮助读者更好地理解和运用多线程技术。
21 1
|
10天前
|
并行计算 Java 调度
深入理解Java中的多线程编程
【10月更文挑战第6天】 本文将探讨Java中多线程编程的基本概念、实现方式及其在实际项目中的应用。通过详细的示例和解释,读者能够掌握如何在Java中有效地使用多线程来提高程序的性能和响应能力。
11 1
|
11天前
|
Java 开发者
在 Java 多线程编程中,Lock 接口正逐渐取代传统的 `synchronized` 关键字,成为高手们的首选
【10月更文挑战第6天】在 Java 多线程编程中,Lock 接口正逐渐取代传统的 `synchronized` 关键字,成为高手们的首选。相比 `synchronized`,Lock 提供了更灵活强大的线程同步机制,包括可中断等待、超时等待、重入锁及读写锁等高级特性,极大提升了多线程应用的性能和可靠性。通过示例对比,可以看出 Lock 接口通过 `lock()` 和 `unlock()` 明确管理锁的获取和释放,避免死锁风险,并支持公平锁选择和条件变量,使其在高并发场景下更具优势。掌握 Lock 接口将助力开发者构建更高效、可靠的多线程应用。
18 2