体验托管Prometheus监控阿里云容器服务Kubernetes的GPU资源

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 通过ARMS管理Kubernetes集群GPU性能指标 在阿里云容器服务中使用GPU资源运行进行AI模型训练和预测时,经常需要了解应用负载的GPU的使用情况,比如每块显存使用情况、GPU利用率,GPU卡温度等监控信息,通过内置ARMS可以从应用的维度去观测GPU的使用情况,了解资源水位,以及设定相应的报警,避免因为GPU资源的约束引发业务风险。


在阿里云容器服务中使用GPU资源运行进行AI模型训练和预测时,经常需要了解应用负载的GPU的使用情况,比如每块显存使用情况、GPU利用率,GPU卡温度等监控信息,通过内置ARMS可以从应用的维度去观测GPU的使用情况,了解资源水位,以及设定相应的报警,避免因为GPU资源的约束引发业务风险。


另外相比自建的Prometheus方案, ARMS的全面托管的 Prometheus 服务可以提供以下特性,更好的为您的业务应用保驾护航

  • 高可用、可扩展的 Prometheus Server
  • 与阿里云容器服务深度集成
  • 监控数据无限存储能力

前提

使用步骤

  1. 登录ARMS控制台, 选择Kubernetes所在的集群
  2. 在ARMS控制台中prometheus界面中,点击集群列表中需要监控集群的安装按钮。此过程需要2分钟左右,请点击确认。


prometheus_1

3. 在该集群的已安装插件中可以看到 GPU NodeGPU APP,分别从节点维度和应用维度监控GPU资源


prometheus_2

4. 我们可以运行一个TensorFlow的测试程序验证

apiVersion: apps/v1beta1
kind: StatefulSet

metadata:
  name: test
  labels:
    app: test

spec:
  replicas: 1
  serviceName: "test"
  podManagementPolicy: "Parallel"
  selector: # define how the deployment finds the pods it manages
    matchLabels:
      app: test

  template: # define the pods specifications
    metadata:
      labels:
        app: test

    spec:
      hostNetwork: true
      hostPID: true
      containers:
      - name: test
        image: registry.cn-shanghai.aliyuncs.com/tensorflow-samples/tensorflow-gpu-mem:10.0-runtime-centos7
        command:
          - python3
          - /app/main.py
        resources:
          limits:
            nvidia.com/gpu: 1


部署成功后,查看应用的状态,可以知道应用的名称是test-0

# kubectl get po
NAME     READY   STATUS    RESTARTS   AGE
test-0   1/1     Running   0          63m

5. 进入GPU Node从节点维度监控


5.1 可以看到总的监控指标分为三个部分,最上面的部分是GPU的平均温度,总能耗和每个节点的显存使用。可以看到当GPU应用部署之后,节点的GPU


prometheus_3




5.2 而第二部分是GPU的分配状况,代表集群中的GPU中有多少分配给了工作负载;而右侧是每个节点的GPU数量。从本例子中看到部署Pod前GPU分配数目为0,而右侧的值一直是固定的值。


prometheus_4



5.3 第三部分则是以GPU卡的维度展示温度,能耗和使用率


prometheus_5

6. 如果想从应用的角度监控,则可以进入GPU App页面


6.1 第一行的数据是应用test-0使用的显存百分比和显存量


prometheus_6



6.2 第二行和第三行的数据是应用test-0的能耗,使用率和温度


prometheus_7

总结

通过使用托管Prometheus可以以Kubernetes原生的方式对于GPU资源进行监控, 可以帮助你更好的了解GPU基础架构的性能,以及它和业务性能的关系。我们后续还会支持针对GPU共享的监控。

相关实践学习
巧用云服务器ECS制作节日贺卡
本场景带您体验如何在一台CentOS 7操作系统的ECS实例上,通过搭建web服务器,上传源码到web容器,制作节日贺卡网页。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
12天前
|
运维 Kubernetes Java
阿里云容器计算服务ACS ,更普惠易用、更柔性、更弹性的容器算力
ACS是阿里云容器服务团队推出的一款面向Serverless场景的子产品,基于K8s界面提供符合容器规范的CPU及GPU算力资源。ACS采用Serverless形态,用户无需关注底层节点及集群运维,按需申请使用,秒级按量付费。该服务旨在打造更普惠易用、更柔性、更弹性的新一代容器算力,简化企业上云门槛,加速业务创新。ACS支持多种业务场景,提供通用型、性能型及BestEffort算力质量,帮助客户更从容应对流量变化,降低综合成本。
|
12天前
|
人工智能 运维 监控
阿里云ACK容器服务生产级可观测体系建设实践
本文整理自2024云栖大会冯诗淳(花名:行疾)的演讲,介绍了阿里云容器服务团队在生产级可观测体系建设方面的实践。冯诗淳详细阐述了容器化架构带来的挑战及解决方案,强调了可观测性对于构建稳健运维体系的重要性。文中提到,阿里云作为亚洲唯一蝉联全球领导者的容器管理平台,其可观测能力在多项关键评测中表现优异,支持AI、容器网络、存储等多个场景的高级容器可观测能力。此外,还介绍了阿里云容器服务在多云管理、成本优化等方面的最新进展,以及即将推出的ACK AI助手2.0,旨在通过智能引擎和专家诊断经验,简化异常数据查找,缩短故障响应时间。
阿里云ACK容器服务生产级可观测体系建设实践
|
12天前
|
供应链 安全 Cloud Native
阿里云容器服务助力企业构建云原生软件供应链安全
本文基于2024云栖大会演讲,探讨了软件供应链攻击的快速增长趋势及对企业安全的挑战。文中介绍了如何利用阿里云容器服务ACK、ACR和ASM构建云原生软件供应链安全,涵盖容器镜像的可信生产、管理和分发,以及服务网格ASM实现应用无感的零信任安全,确保企业在软件开发和部署过程中的安全性。
|
12天前
|
人工智能 Cloud Native 调度
阿里云容器服务在AI智算场景的创新与实践
本文源自张凯在2024云栖大会的演讲,介绍了阿里云容器服务在AI智算领域的创新与实践。从2018年推出首个开源GPU容器共享调度方案至今,阿里云容器服务不断推进云原生AI的发展,包括增强GPU可观测性、实现多集群跨地域统一调度、优化大模型推理引擎部署、提供灵活的弹性伸缩策略等,旨在为客户提供高效、低成本的云原生AI解决方案。
|
12天前
|
运维 Kubernetes 调度
阿里云容器服务 ACK One 分布式云容器企业落地实践
阿里云容器服务ACK提供强大的产品能力,支持弹性、调度、可观测、成本治理和安全合规。针对拥有IDC或三方资源的企业,ACK One分布式云容器平台能够有效解决资源管理、多云多集群管理及边缘计算等挑战,实现云上云下统一管理,提升业务效率与稳定性。
|
12天前
|
Kubernetes 算法 调度
阿里云 ACK FinOps成本优化最佳实践
本文源自2024云栖大会梁成昊演讲,讨论了成本优化策略的选择与实施。文章首先介绍了成本优化的基本思路,包括优化购买方式、调整资源配置等基础策略,以及使用弹性、资源混部等高级策略。接着,文章详细探讨了集群优化和应用优化的具体方法,如使用抢占式实例降低成本、通过资源画像识别并优化资源配置,以及利用智能应用弹性策略提高资源利用效率。
|
12天前
|
弹性计算 调度 数据中心
阿里云 ACK One 注册集群云上弹性:扩展业务新利器
随着企业数字化转型深入,传统IDC数据中心因物理容量限制,难以实现动态扩容,缺乏弹性能力。阿里云ACK One注册集群凭借其高度灵活性和丰富资源选择,成为解决此问题的最佳方案。通过与阿里云资源的整合,ACK One不仅实现了计算资源的按需扩展,提高了资源利用率,还通过按需付费模式降低了成本,使企业能够更高效地应对业务增长和高峰需求。
|
12天前
|
运维 Kubernetes Serverless
阿里云Argo X K8s玩转工作流引擎,实现大规模并行计算
本文基于2024云栖大会田双坤的演讲,介绍了Kubernetes作为云原生操作系统的角色及其在各类任务中的应用,重点探讨了Argo Workflows在Kubernetes上编排并行任务的能力。面对自建Argo Workflows的挑战,如稳定性、成本和安全性等问题,阿里巴巴云推出了全托管的Serverless Argo工作流,提供全托管、免运维、可观测和易集成的特点,显著提升了任务编排的效率和稳定性。适用于数据处理、科学计算、自动驾驶仿真等多个领域。
|
12天前
|
Kubernetes 容灾 调度
阿里云 ACK 高可用稳定性最佳实践
本文整理自2024云栖大会刘佳旭的演讲,主题为《ACK高可用稳定性最佳实践》。文章探讨了云原生高可用架构的重要性,通过Kubernetes的高可用案例分析,介绍了ACK在单集群高可用架构设计、产品能力和最佳实践方面的方法,包括控制面和数据面的高可用策略、工作负载高可用配置、企业版容器镜像服务高可用配置等内容,旨在帮助企业构建更加可靠和高效的应用运行环境。
|
12天前
|
存储 Kubernetes 关系型数据库
阿里云ACK备份中心,K8s集群业务应用数据的一站式灾备方案
本文源自2024云栖大会苏雅诗的演讲,探讨了K8s集群业务为何需要灾备及其重要性。文中强调了集群与业务高可用配置对稳定性的重要性,并指出人为误操作等风险,建议实施周期性和特定情况下的灾备措施。针对容器化业务,提出了灾备的新特性与需求,包括工作负载为核心、云资源信息的备份,以及有状态应用的数据保护。介绍了ACK推出的备份中心解决方案,支持命名空间、标签、资源类型等维度的备份,并具备存储卷数据保护功能,能够满足GitOps流程企业的特定需求。此外,还详细描述了备份中心的使用流程、控制台展示、灾备难点及解决方案等内容,展示了备份中心如何有效应对K8s集群资源和存储卷数据的灾备挑战。

相关产品

  • 容器计算服务
  • 容器服务Kubernetes版