人民的名义分析

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 人民的名义台本分析<br />数据源:人民的名义台本<br />数据大小:77.8 KB<br />字段数量:2<br />使用组件:读数据表<br />
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
打赏
0
0
0
7
15
分享
相关文章
Cosmos on PAI系列一:PAI-Model Gallery云上一键部署NVIDIA Cosmos Reason-1
本篇文章介绍 Cosmos 最新世界基础模型 Cosmos Reason-1 如何在阿里云人工智能平台 PAI 上进行快速部署使用。
云上玩转DeepSeek系列之六:DeepSeek云端加速版发布,具备超高推理性能
作为国内首个千亿级开源 MoE 模型,DeepSeek-R1 凭借其卓越的代码生成与复杂推理能力,已成为开发者构建智能应用的首选。然而,原始模型在产业落地中面临严峻挑战,部署 671B 满血版模型不仅硬件门槛要求很高,同时吞吐效率和响应延迟也受到了制约。PAI 正式推出了优化版 DeepSeek-R1 模型 DeepSeek-R1-PAI-optimized,将大模型推理效率推向了 Next Level。
Qwen3 全尺寸模型支持通过阿里云PAI-ModelGallery 一键部署
Qwen3 是 Qwen 系列最新一代的大语言模型,提供了一系列密集(Dense)和混合专家(MOE)模型。目前,PAI 已经支持 Qwen3 全系列模型一键部署,用户可以通过 PAI-Model Gallery 快速开箱!
人工智能平台 PAI DistilQwen2.5-DS3-0324发布:知识蒸馏+快思考=更高效解决推理难题
DistilQwen 系列是阿里云人工智能平台 PAI 推出的蒸馏语言模型系列,包括DistilQwen2、DistilQwen2.5、DistilQwen2.5-R1 等。DistilQwen2.5-DS3-0324 系列模型是基于 DeepSeek-V3-0324 通过知识蒸馏技术并引入快思考策略构建,显著提升推理速度,使得在资源受限的设备和边缘计算场景中,模型能够高效执行复杂任务。实验显示,DistilQwen2.5-DS3-0324 系列中的模型在多个基准测试中表现突出,其32B模型效果接近参数量接近其10倍的闭源大模型。
PAI训练服务:云上大模型训练新篇章
本文介绍了通用AI时代下的新训练方法及PAI平台的优化。随着大模型时代的到来,算力需求激增,硬件和网络通信成为瓶颈。PAI平台通过自动容错、3D健康检测等技术确保训练稳定性;通过资源配额、智能调度等提高性价比;并推出PAI-TorchAcc和PAI-ChatLearn两大引擎,分别实现高效训练加速和灵活的对齐训练,显著提升训练性能与效果。这些改进解决了大规模AI训练中的关键问题,提升了效率和稳定性。
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
CoT神话破灭,并非LLM标配!三大学府机构联手证实,CoT仅在数学符号推理有用
【10月更文挑战第17天】链式思维(CoT)曾被认为是大型语言模型(LLM)激发推理能力的关键方法,但最新研究显示,CoT仅在数学和符号推理任务中有效,其他任务中效果不明显。加州大学伯克利分校、斯坦福大学和卡内基梅隆大学的联合研究打破了CoT作为LLM标配的神话,为重新评估LLM的推理能力提供了新视角。
175 1
阿里云可观测 2024 年 10 月产品动态
阿里云可观测 2024 年 10 月产品动态。
141 65
【Azure Bot Service】部署NodeJS ChatBot代码到App Service中无法自动启动
2024-11-12T12:22:40.366223350Z Error: Cannot find module 'dotenv' 2024-11-12T12:40:12.538120729Z Error: Cannot find module 'restify' 2024-11-12T12:48:13.348529900Z Error: Cannot find module 'lodash'
114 11
贝叶斯线性回归:概率与预测建模的融合
本文探讨了贝叶斯方法在线性回归中的应用,从不确定性角度出发,介绍了如何通过概率来表达变量间关系的不确定性。文章首先回顾了古希腊天文学家使用本轮系统模拟行星运动的历史,并将其与傅里叶级数分解方法类比,强调了近似的重要性。接着,通过高斯分布和贝叶斯推断,详细讲解了线性回归中的不确定性处理方法。文章使用Howell1数据集,展示了如何构建和拟合高斯模型,并通过先验预测模拟验证模型合理性。最后,介绍了多项式回归和样条方法,展示了如何逐步增加模型复杂性以捕捉更细微的数据模式。贝叶斯方法不仅提供了点估计,还提供了完整的后验分布,使得模型更具解释性和鲁棒性。
259 1
贝叶斯线性回归:概率与预测建模的融合
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问