来自波士顿的初创企业,正在利用AI技术颠覆工业质量检测体系

简介: Neurala公司联合创始人兼CEO Massimiliano Versace表示,“AI技术所具备的视觉识别能力,有望给整个制造业创造巨大价值。AI将这种能够与人类决策水平比肩的能力带入生产线,实现远超常规机器视觉系统的识别准确度。”

云栖号资讯:【点击查看更多行业资讯
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!

至顶网软件与服务频道消息:人工智能(AI)正风靡全球。需要强调的是,AI已经成为当下既被严重夸大、又被严重低估的技术成果之一。之所以说夸大,是因为当下几乎任何企业都想把“AI”字眼加进自己的产品当中。(个人认为在披萨烤箱里加进「AI」非常荒唐。)而之所以说低估,是因为大多数行业并没有真正理解AI技术所能带来的下一场革命。

Neurala公司对此有着自己的看法,该公司认为,AI将给制造业领域的机器检查技术带来巨大改进。Neurala公司联合创始人兼CEO Massimiliano Versace表示,“AI技术所具备的视觉识别能力,有望给整个制造业创造巨大价值。AI将这种能够与人类决策水平比肩的能力带入生产线,实现远超常规机器视觉系统的识别准确度。”

Neurala是一家来自波士顿的技术初创企业,致力于将AI引入计算机视觉检查领域。该公司成立于2006年,通过四轮融资筹得1600万美元。最近的一次是2017年1月的A轮融资,由Pelion Venture Partners领投,融资额为1400万美元。Neurala公司目前拥有50名员工。

该公司在核心业务在于开发专有神经网络技术(即Lifelong-Deep神经网络,简称Lifelong-DNN),意在进一步提升计算机视觉的性能水平。Lifelong-DNN最初专为美国宇航局的自动行星探测机器人所设计,其模拟人类大脑的观察与学习方式。与计算机视觉相结合,该技术能够实现对系统的快速连续训练,借此准确发现并标记存在缺陷的产品。Lifelong-DNN本身属于Neurala公司Brain Builder AI平台的组成部分。

Versace解释道,“对于大多数现有应用而言,常规的计算机视觉方案已经能够发挥很好的效果,例如在光滑的表面上寻找划痕。但其作用本质仍存在严重的局限性,也就是在相同当中找出不同。而在大多数实际应用场景中,我们根本无法满足机器视觉提出的标准化要求。”

就Versace个人而言,他从25年前就开始从事AI技术研究,并与DARPA及美国宇航局一道开发机器人与无人机。他曾参与过石油与天然气行业中的无人机设备检查项目,这段经历,也让他下定决心投身于利用视觉技术实现对消费级产品及OEM生产的质量控制。他表示,“近年来,制造业一直在以种种有趣的方式使用AI技术。我们将见证越来越多实际应用的诞生,并迎接AI驱动型制造业的全面腾飞。”

Neurala公司的人工智能系统,可以利用产品图片,来学习目标产品的外观。对于这类具备大量关于合格产品的数据,而不良产品数据相对有限的使用专题来说,计算机视觉技术可以说再合适不过了。Versace指出,“常规制造业就是这样,并不会保存太多不良产品的信息。以制药领域为例,他们要求系统完美运行,一切与预期相左的状态都属于异常。这意味着我们可以利用少量图像建立起「质量良好」这一基准概念,并拒绝一切与之冲突的产品表现。相关识别模型只需要短短几分钟就能设置完成。”

AI系统最强大的一点,在于持续学习能力。Versace解释道,“如果系统认为某款产品合格,但操作人员给出不同意见,系统就能从中学习新的经验。它会意识到自己遗漏了某些关键信息,借此完善数据集,推动系统能力的进一步提升。”

IHI Corporation作为全球最大的飞机发动机、汽车与工业涡轮增压器以及其他运输相关设备制造商之一,目前也成为Neurala公司的客户。IHI物联网项目部总经理Yukihiro Kawano表示,“在检测准确度与处理速度方面,我们发现Neurala的Brain Builder AI平台要远远优于其他标准视觉检测系统。Brain Builder能够利用AI技术,从图像中准确检测出特定对象类别。这是生成注释数据的关键,并可被用于确保该平台准确检测生产线制造出来的任何对象。”

这种对异常问题的实时识别能力不仅能够节约下大量资金,防止存在质量问题的产品被交付到客户手中,同时也让操作人员得以立即着手纠正问题。因此,IHI希望将这套系统推向更广泛的应用场景。Kawano指出,“展望未来,我们希望利用Brain Builder改善其他工厂的制造流程,包括借此快速识别并检测其他生产线中更为多样的产品对象。”

Neurala公司的发展愿景也正在于此。Versace表示,“我们正在切实证明AI技术在改善制造能力、解决异常问题并节约成本方面的实际效果。我们一直以月作为规划周期单位,目前也已经开始与制造业领域的多家知名大企业开展合作。”

他还抱有更大的雄心壮志。他总结道,“着眼于宏观经济层面,机器人与AI技术将帮助制造业重返美国,同时让制造类工作岗位变得更具吸引力。我知道很多人担心自己的工作被AI彻底取代,但如今的年轻人们已经习惯了同技术打交道,而且愿意不断学习。AI技术在完善整个制造业流程的同时,也将让我们的工人拥有更强大、更高效的生产能力。”

【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/zhibo

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-03-28
本文作者:Jim Vinoski
本文来自:“至顶网”,了解相关信息可以关注“至顶网

相关文章
|
3天前
|
机器学习/深度学习 人工智能 算法
【AI问爱答-双十一返场周】第二场企业办公视频
【AI问爱答-双十一返场周】探讨AI大模型时代对企业办公的影响。AI员工旨在辅助而非替代人类,通过深度学习、大规模训练数据和自我监督学习提升效率。视频介绍生成式智能工具如全妙系列,助力企业内容生产。关注AI问爱答,了解更多AI技术与应用。
|
8天前
|
存储 人工智能 自然语言处理
|
5天前
|
人工智能 缓存 Ubuntu
AI+树莓派=阿里P8技术专家。模拟面试、学技术真的太香了 | 手把手教学
本课程由阿里P8技术专家分享,介绍如何使用树莓派和阿里云服务构建AI面试助手。通过模拟面试场景,讲解了Java中`==`与`equals`的区别,并演示了从硬件搭建、语音识别、AI Agent配置到代码实现的完整流程。项目利用树莓派作为核心,结合阿里云的实时语音识别、AI Agent和文字转语音服务,实现了一个能够回答面试问题的智能玩偶。课程展示了AI应用的简易构建过程,适合初学者学习和实践。
51 22
|
2天前
|
人工智能 Java 程序员
通义灵码AI编码助手和AI程序员背后的技术
通义灵码AI编码助手和AI程序员背后的技术,由通义实验室科学家黎槟华分享。内容涵盖三部分:1. 编码助手技术,包括构建优秀AI编码助手及代码生成补全;2. 相关的AI程序员技术,探讨AI程序员的优势、发展情况、评估方法及核心难点;3. 代码智能方向的展望,分析AI在软件开发中的角色转变,从辅助编程到成为开发主力,未来将由AI执行细节任务,开发者负责决策和审核,大幅提升开发效率。
30 12
|
4天前
|
人工智能 搜索推荐
AI视频技术的发展是否会影响原创内容的价值
AI视频技术的发展显著降低了视频制作的门槛与成本,自动完成剪辑、特效添加等繁琐工作,大大缩短创作时间。它提供个性化创意建议,帮助创作者突破传统思维,拓展创意边界。此外,AI技术使更多非专业人士也能参与视频创作,注入新活力与多样性,丰富了原创内容。总体而言,AI视频技术不仅提升了创作效率,还促进了视频内容的创新与多样化。
|
1天前
|
机器学习/深度学习 人工智能 编译器
BladeDISC++:Dynamic Shape AI 编译器下的显存优化技术
本文介绍了阿里云 PAI 团队近期发布的 BladeDISC++项目,探讨在动态场景下如何优化深度学习训练任务的显存峰值,主要内容包括以下三个部分:Dynamic Shape 场景下显存优化的背景与挑战;BladeDISC++的创新解决方案;Llama2 模型的实验数据分析
|
1天前
|
存储 人工智能 边缘计算
AI时代下, 边缘云上的技术演进与场景创新
本文介绍了AI时代下边缘云的技术演进与场景创新。主要内容分为三部分:一是边缘云算力形态的多元化演进,强调阿里云边缘节点服务(ENS)在全球600多个节点的部署,提供低时延、本地化和小型化的价值;二是边缘AI推理的创新发展与实践,涵盖低时延、资源广分布、本地化及弹性需求等优势;三是云游戏在边缘承载的技术演进,探讨云游戏对边缘计算的依赖及其技术方案,如多开技术、云存储和网络架构优化,以提升用户体验并降低成本。文章展示了边缘云在未来智能化、实时化解决方案中的重要性。
|
3天前
|
机器学习/深度学习 人工智能 算法
昇腾AI行业案例(一):基于AI图像处理的疲劳驾驶检测
在本实验中,您将学习如何使用利用CV(Computer Vision)领域的AI模型来构建一个端到端的疲劳驾驶检测系统,并使用开源数据集进行效果验证。为此,我们将使用昇腾的AI硬件以及CANN等软件产品。
26 3
|
1天前
|
人工智能 算法 计算机视觉
昇腾AI行业案例(三):基于 AI 图像处理的铝板缺陷检测
欢迎学习《基于 AI 图像处理的铝板缺陷检测》实验。在本实验中,你将深入了解如何运用计算机视觉(CV)领域的 AI 模型,搭建一个高效精准的铝板缺陷检测系统,并利用开源数据集和昇腾 AI 芯片对模型效果加以验证。
7 0
|
1天前
|
机器学习/深度学习 人工智能 算法
昇腾AI行业案例(二):基于 AI 图像处理的安全帽检测
欢迎学习《昇腾行业应用案例》的 “基于 AI 图像处理的安全帽检测” 实验。在本实验中,你将深入了解如何运用计算机视觉(CV)领域的 AI 模型,搭建一个高效精准的安全帽检测系统,并利用开源数据集对模型效果加以验证。为此,我们将使用昇腾的AI硬件以及CANN等软件产品。
9 0

热门文章

最新文章