用纯Python实现循环神经网络RNN向前传播过程(吴恩达DeepLearning.ai作业)

简介:

用纯Python实现循环神经网络RNN向前传播过程(吴恩达DeepLearning.ai作业)
Google TensorFlow程序员点赞的文章!

 

前言

目录:

  • 向量表示以及它的维度
  • rnn cell
  • rnn 向前传播

重点关注:

  • 如何把数据向量化的,它们的维度是怎么来的
  • 一共其实就是两步: 单个单元的rnn计算,拉通来的rnn计算

在看本文前,可以先看看这篇文章回忆一下:

吴恩达deepLearning.ai循环神经网络RNN学习笔记(理论篇)

我们将实现以下结构的RNN,在这个例子中 Tx = Ty。

向量表示以及它的维度

Input with  nx  number of units
对单个输入样本,x(i) 是一维输入向量。
用语言来举个例子,将具有5k个单词词汇量的语言用one-hot编码成具有5k个单位的向量,所以 x(i) 的维度是(5000,)。
我们将用符号 nx 表示单个训练样本的单位数。
Batches of size m
如果我们取小批量(mini-batches),每个批次有20个训练样本。
为了受益于向量化,我们将20个样本 x(i) 变成一个2维数组(矩阵)。
比如一个维度是(5000,20)的向量。
我们用m来表示训练样本的数量。
所以小批量训练数据的维度是 (nx, m)。
Time steps of size Tx
循环神经网络有多个时间步骤,我们用t来表示。
我们将看到训练样本 x(i) 将经历多个时间步骤 Tx, 比如如果有10个时间步骤,那么 Tx = 10。
3D Tensor of shape (nx, m, Tx)
输入x就是用维度是 (nx, m, Tx) 的三维张量来表示。
Taking a 2D slice for each time step:

每一个时间步骤,我们用小批量训练样本(不是单个的训练样本)。
所以针对每个时间步骤t,我们用维度是 (nx, m)的2维切片。
我们把它表示成xt。
隐藏状态a的维度
a的定义: 从一个时间步骤到另一个时间步骤的激活值 at, 我们把它叫做隐藏状态。
同输入张量 x 一样,对于单个训练样本的隐藏状态,它的向量长度是na。
如果我们是包含了m个训练样本的小批量数据,那么小批量维度是 (na, m)。
如果我们把时间步加进去,那么隐藏状态的维度就是 (na, m, Tx)。
我们将用索引t来遍历时间步,每次操作是从3维张量切片成的2维向量。
我们用at来表示2维的切片,它的维度是 (na, m)。
预测值y^的维度
同输入x和隐藏状态一样,y^是一个维度是 (ny, m, Ty) 的3维张量。
ny: 代表预测值的单位数。
m: 小批次训练的样本数量。
Ty: 预测的时间数。
比如单个时间步 t,2维的切片 y^ 的维度是 (ny, m)。
 

RNN cell

 

我们的第一个任务就是执行单个时间步骤的计算,计算如下图。

输入是a^, xt,输出是at, yt^。以下的代码其实就是把上面的公式代码化,总的步骤分成4步:

取出参数。
计算at。
计算yt^。
返回输出的at, yt^,还要存储一些值缓存起来。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
​import numpy as np

def rnn_cell_forward(xt, a_prev, parameters):
    """
    Implements a single forward step of the RNN-cell as described in Figure (2)

    Arguments:
    xt -- your input data at timestep "t", numpy array of shape (n_x, m).
    a_prev -- Hidden state at timestep "t-1", numpy array of shape (n_a, m)
    parameters -- python dictionary containing:
                        Wax -- Weight matrix multiplying the input, numpy array of shape (n_a, n_x)                        Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n_a, n_a)
                        Wya -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
                        ba --  Bias, numpy array of shape (n_a, 1)
                        by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)
    Returns:
    a_next -- next hidden state, of shape (n_a, m)
    yt_pred -- prediction at timestep "t", numpy array of shape (n_y, m)
    cache -- tuple of values needed for the backward pass, contains (a_next, a_prev, xt, parameters)
    """
    # 取计算的参数
    Wax = parameters["Wax"]
    Waa = parameters["Waa"]
    Wya = parameters["Wya"]
    ba = parameters["ba"]
    by = parameters["by"]

    # 用公式计算下一个单元的激活值
    a_next = np.tanh(np.dot(Waa, a_prev) + np.dot(Wax, xt) + ba)
    # 计算当前cell的输出
    yt_pred = softmax(np.dot(Wya, a_next) + by)
    
    # 用于向后传播的缓存值
    cache = (a_next, a_prev, xt, parameters)

    return a_next, yt_pred, cache

RNN向前传播

一个循环神经网络就是不断的重复你上面创建的rnn 单元。
如果你的输入数据序列是10个时间步,那么你就要重复你的rnn cell 10次。
在每个时间步中,每个单元将用2个输入:
a: 前一个单元的隐藏状态。
xt: 当前时间步的输入数据。
每个时间步有两个输出:
一个隐藏状态at
一个测值y^⟨t⟩
权重和偏差 (Waa,ba,Wax,bx) 将在每个时间步中循环使用,它们保存在"parameters"的变量中。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
def rnn_forward(x, a0, parameters):
    """
    Implement the forward propagation of the recurrent neural network described in Figure (3).

    Arguments:
    x -- Input data for every time-step, of shape (n_x, m, T_x).
    a0 -- Initial hidden state, of shape (n_a, m)
    parameters -- python dictionary containing:
                        Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n_a, n_a)
                        Wax -- Weight matrix multiplying the input, numpy array of shape (n_a, n_x)
                        Wya -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
                        ba --  Bias numpy array of shape (n_a, 1)
                        by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)

    Returns:
    a -- Hidden states for every time-step, numpy array of shape (n_a, m, T_x)
    y_pred -- Predictions for every time-step, numpy array of shape (n_y, m, T_x)
    caches -- tuple of values needed for the backward pass, contains (list of caches, x)
    """

    # 用于存储所有cache的列表,初始化它
    caches = []

    # 取一些纬度值,用于后面初始化变量
    n_x, m, T_x = x.shape
    n_y, n_a = parameters["Wya"].shape


    # 初始化 a 和 y_pred
    a = np.zeros((n_a, m, T_x))
    y_pred = np.zeros((n_y, m, T_x))

    # 初始化 a_next
    a_next = a0

    # loop over all time-steps of the input 'x'
    for t in range(T_x):
        # Update next hidden state, compute the prediction, get the cache
        xt = x[:,:,t] # 通过切片的方式从输入变量x中取出当前t时间步的输入xt
        a_next, yt_pred, cache = rnn_cell_forward(xt, a_next, parameters)
        # 保存当前单元计算的a_next值

        a[:,:,t] = a_next
        # 保存当前单元的预测值y

        y_pred[:,:,t] = yt_pred
        # 添加每个单元的缓存值
        caches.append(cache)


    # store values needed for backward propagation in cache
    caches = (caches, x)

    return a, y_pred, caches

恭喜你(^▽^),到这里你已经能够从0到1的构建循环神经网络的向前传播过程。

在现代深度学习框架中,您仅需实现前向传递,而框架将处理后向传递,因此大多数深度学习工程师无需理会后向传递的细节。我就不写向后传播了。

相关文章
|
2月前
|
搜索推荐 程序员 调度
精通Python异步编程:利用Asyncio与Aiohttp构建高效网络应用
【10月更文挑战第5天】随着互联网技术的快速发展,用户对于网络应用的响应速度和服务质量提出了越来越高的要求。为了构建能够处理高并发请求、提供快速响应时间的应用程序,开发者们需要掌握高效的编程技术和框架。在Python语言中,`asyncio` 和 `aiohttp` 是两个非常强大的库,它们可以帮助我们编写出既简洁又高效的异步网络应用。
161 1
|
7天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
118 55
|
1月前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
1月前
|
Python
Python中的异步编程:使用asyncio和aiohttp实现高效网络请求
【10月更文挑战第34天】在Python的世界里,异步编程是提高效率的利器。本文将带你了解如何使用asyncio和aiohttp库来编写高效的网络请求代码。我们将通过一个简单的示例来展示如何利用这些工具来并发地处理多个网络请求,从而提高程序的整体性能。准备好让你的Python代码飞起来吧!
75 2
|
1月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
106 6
|
1月前
|
安全 网络安全 数据安全/隐私保护
|
17天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
99 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
22天前
|
网络安全 Python
Python网络编程小示例:生成CIDR表示的IP地址范围
本文介绍了如何使用Python生成CIDR表示的IP地址范围,通过解析CIDR字符串,将其转换为二进制形式,应用子网掩码,最终生成该CIDR块内所有可用的IP地址列表。示例代码利用了Python的`ipaddress`模块,展示了从指定CIDR表达式中提取所有IP地址的过程。
36 6
|
25天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
48 8
|
2月前
|
存储 网络安全 数据安全/隐私保护

热门文章

最新文章

下一篇
DataWorks