不可不知的Spark调优点

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 在利用Spark处理数据时,如果数据量不大,那么Spark的默认配置基本就能满足实际的业务场景。但是当数据量大的时候,就需要做一定的参数配置调整和优化,以保证业务的安全、稳定的运行。并且在实际优化中,要考虑不同的场景,采取不同的优化策略。

在利用Spark处理数据时,如果数据量不大,那么Spark的默认配置基本就能满足实际的业务场景。但是当数据量大的时候,就需要做一定的参数配置调整和优化,以保证业务的安全、稳定的运行。并且在实际优化中,要考虑不同的场景,采取不同的优化策略。

1.合理设置微批处理时间

在SparkSreaming流式处理中,合理的设置微批处理时间(batchDuration)是非常有必要的。
如果batchDuration设置过短,会导致SparkStreaming频繁提交job。如果每个batchDuration所产生的job不能在这个时间内完成处理,就会造成job不断堆积,最终导致SparkStreaming发生阻塞,甚至程序宕掉。
需要根据不同的应用场景和硬件配置等确定,可以根据SparkStreaming的可视化监控界面,观察Total Delay等指标来进行batchDuration的调整。

2.控制消费的最大速率

比如SparkStreaming和Kafka集成,采用direct模式时,需要设置参数spark.streaming.kafka.maxRatePerPartition以控制每个Kafka分区最大消费数。该参数默认没有上线,即Kafka当中有多少数据它就会直接全部拉出。
但在实际使用中,需要根据生产者写入Kafka的速率以及消费者本身处理数据的速度综合考虑。
同时还需要结合上面的batchDuration,使得每个partition拉取的数据,要在每个batchDuration期间顺利处理完毕,做到尽可能高的吞吐量,该参数的调整需参考可视化监控界面中的Input Rate和Processing Time。

3.缓存反复使用的"数据集"

Spark中的RDD和SparkStreaming中的DStream,如果被反复的使用,最好利用cache或者persist算子,将"数据集"缓存起来,防止过度的调度资源造成的不必要的开销。

4.合理的设置GC

JVM垃圾回收是非常消耗性能和时间的,尤其是stop world、full gc非常影响程序的正常运行。
关于JVM和参数配置,建议研读《JVM内存管理和垃圾回收》《JVM垃圾回收器、内存分配与回收策略》《内存泄漏、内存溢出和堆外内存,JVM优化配置参数》

5.合理设置CPU

每个executor可以占用一个或多个core,可以通过观察CPU的使用率变化来了解计算资源的使用情况。
要避免CPU的使用浪费,比如一个executor占用多个core,但是总的CPU利用率却不高。此时建议让每个executor占用相对之前较少的core,同时worker下面增加更多的executor进程来增加并行执行的executor数量,从而提高CPU利用率。同时要考虑内存消耗,毕竟一台机器运行的executor越多,每个executor的内存就越小,容易产生OOM。

6.使用Kryo进行序列化和反序列化

Spark默认使用Java的序列化机制,但这种Java原生的序列化机制性能却比Kryo差很多。使用Kryo需要进行设置:

//设置序列化器为KryoSerializer
SparkConf.set("spark.serializer","org.apache.spark.serializer.KryoSerializer")
//注册要序列化的自定义类型
SparkConf.registerKryoClasses(Array(classOf[CustomClass1],classOf[CustomClass2]))

7.使用高性能的算子

1)使用reduceByKey、aggregateByKey替代groupByKey
2)filter之后进行coalesce操作
3)使用repartitionAndSortWithinPartition
替代repartition与sort操作
4)使用mapPartition替代map
5)使用foreachPartition替代foreach

要结合实际使用场景,进行算子的替代优化。

除了上述常用调优策略,还有合理设置Spark并行度,比如参数spark.default.parallelism的设置等,所有这些都要求对Spark内核原理有深入理解,这里不再一一阐述。


本文转载自公众号: 大数据学习与分享
原文链接:https://mp.weixin.qq.com/s?__biz=MzI0Mjc0MDU2NQ==&mid=2247484099&idx=1&sn=5755c366d08e82886bf0c6af9d6cf6cb&chksm=e976fef9de0177ef1e6d4dad6aa0ab6363e54b316c64f51aef3ac1ba4a5c6d4336d8c2b6ddc4&scene=21#wechat_redirect


阿里巴巴开源大数据技术团队成立Apache Spark中国技术社区,定期推送精彩案例,技术专家直播,问答区近万人Spark技术同学在线提问答疑,只为营造纯粹的Spark氛围,欢迎钉钉扫码加入!

image.png

对开源大数据和感兴趣的同学可以加小编微信(下图二维码,备注“进群”)进入技术交流微信群。
image.png

Apache Spark技术交流社区公众号,微信扫一扫关注

image.png

相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
相关文章
|
SQL 数据采集 存储
工作经验分享:Spark调优【优化后性能提升1200%】
工作经验分享:Spark调优【优化后性能提升1200%】
1056 1
工作经验分享:Spark调优【优化后性能提升1200%】
|
SQL 存储 分布式计算
工作常用之Spark调优【一】
Spark 3.0 大版本发布, Spark SQL 的优化占比将近 50% 。 Spark SQL 取代 Spark Core ,成为新一代的引擎内核,所有其他子框架如 Mllib 、 Streaming 和 Graph ,都可以共享 SparkSQL 的性能优化,都能从 Spark 社区对于 Spark SQL 的投入中受益。
246 0
工作常用之Spark调优【一】
|
SQL 消息中间件 存储
每日积累【Day2】SPARK调优
每日积累【Day2】SPARK调优
每日积累【Day2】SPARK调优
|
分布式计算 Spark
【Spark 调优】Spark 开发调优的十大原则
【Spark 调优】Spark 开发调优的十大原则
211 0
【Spark 调优】Spark 开发调优的十大原则
|
SQL 分布式计算 大数据
「Spark从精通到重新入门(一)」Spark 中不可不知的动态优化
Apache Spark 自 2010 年面世,到现在已经发展为大数据批计算的首选引擎。而在 2020 年 6 月份发布的Spark 3.0 版本也是 Spark 有史以来最大的 Release,其中将近一半的 issue 都属于 SparkSQL。这也迎合我们现在的主要场景(90% 是 SQL),同时也是优化痛点和主要功能点。我们 Erda 的 FDP 平台(Fast Data Platform)也从 Spark 2.4 升级到 Spark 3.0 并做了一系列的相关优化,本文将主要结合 Spark 3.0 版本进行探讨研究。
274 0
「Spark从精通到重新入门(一)」Spark 中不可不知的动态优化
|
分布式计算 Java Spark
|
域名解析 安全 Java
这年头还有问Tomcat调优和JVM参数优化的,你还不知道怎么回答么?那么你一定需要看看这篇文章
前几天阿粉的一个小学弟在咨询阿粉面试的时候怎么还会问到关于Tomcat调优和JVM优化,我听完这个的时候,当时就想说,问这个不是应该的么?那么下面阿粉就给大家好好的掰扯掰扯这个Tomcat优化和 JVM 参数优化的事情
这年头还有问Tomcat调优和JVM参数优化的,你还不知道怎么回答么?那么你一定需要看看这篇文章
|
SQL 存储 分布式计算
「Spark从精通到重新入门(二)」Spark中不可不知的动态资源分配
资源是影响 Spark 应用执行效率的一个重要因素。Spark 应用中真正执行 task 的组件是 Executor,可以通过spark.executor.instances 指定 Spark 应用的 Executor 的数量。在运行过程中,无论 Executor上是否有 task 在执行,都会被一直占有直到此 Spark 应用结束。
826 0
「Spark从精通到重新入门(二)」Spark中不可不知的动态资源分配

热门文章

最新文章