赫本、紫霞仙子、林黛玉……纵你百变,阿里AI一眼看穿

简介: 化妆术拥有着让人类“改头换面”的神奇力量,遇到人工智能后,依旧奏效吗?

--------点击屏幕右侧或者屏幕底部“+订阅”,关注我,随时分享机器智能最新行业动态及技术干货------------

化妆术,被称作是亚洲“第四大邪术”,拥有着让人类“改头换面”的神奇力量。人类世界里随意横行的“障眼法”,遇到人工智能后,依旧奏效吗?阿里巴巴的图像 AI 团队就曾做过一个实验:

他们邀请了一位仿妆达人通过化妆挑战支付宝的刷脸闸机。精心妆扮之后,她接连成为 “赫本”“紫霞仙子”“林黛玉”,然而这三次“整容”般的化妆术在 AI 面前依然失效了 —— 闸机以 100% 的准确率全部成功识别。

为什么让人类肉眼无法辨别的化妆术在 AI 面前就原形毕露?

image.png

下面让我们细细道来。

不解风情的 AI,天生自带“卸妆水”

原来,这是因为 AI 与人类之间有着完全不同的认知逻辑。

我们都知道计算机使用二进制进行存储和运算,计算机对图片的理解也不例外。人类在大千世界里看到的纷纷扰扰,在计算机的眼里最后都会变成简单的“0”和“1”。

以下面这张美女图为例,计算机以 RGB 通道的方式理解图片,RGB 可以表现 1677 万种颜色,使得 AI 能够直观的感知图片中的细节变化。

1.png

左侧为实体照片,右图为 AI 编码后的图像,AI 真乃灵魂画手是也

接着 AI 会从每个像素开始去理解,不同部位之间的边缘过度和明暗变化等特征,例如发现人的眉眼边界,肤色明暗变换。

image.png

在“灵魂画手”的画笔下,美女一步步失去“美貌”

然后运用统计的方法对低层特征进行组合重绘,形成更高层次的特征,把人脸的某个特质部位或者整张人脸勾勒出来,最后完成快速比对。

6.png

整个过程中,每一步都建立在数字的基础上,每一步AI都像是个“冒得感情”的数学高手。细挑的柳叶眉、性感的大波浪,含羞的咬唇妆……这些人类眼中千姿百态的美,在 AI 看来,也不过在数值大小存在差异的数字而已。

image.png

两张图的比对,颜值爆表的女神和相貌平平的路人,最终 AI 这里并不会有太大区别。

而“化妆术”本质是人类对色彩的灵活运用,并没有改变人类脸部的关键特征,因而很难逃过 AI 的双眼。

这样的一种极简主义的表达,在人类看来不免略显残酷。然而就是在这样简单直接的理解之上,科学家们所设计的深度学习模型在识别率上才得以超越人类。

2.png

在应用领域,阿里巴巴研发的图像 AI ——拍立淘,目前已经可以识别超过 100 万种实体,建成了世界最大的商品图搜系统。

也许有人会诧异,别说 100 万种实体,就算是 1 万种,记忆高手也很难记全,AI 又是如何做到的?

3.png

秘诀在于 AI 有着人类难以望其项背的三大能力:

  1. 更广泛的认知来源。一般来说,人类只能通过周围环境和社交活动来获得新的认知,而通过大规模学习标注好的数据,AI 可以识别越来越多的实体,并且 “看”得越多,AI 识别得越好。
  2. 更细致的认知能力。除非长时间观看,人类很难关注到单张图片的每个细节信息。而 AI 不会错过任何一个细节:每个像素点都会被平等地对待,每个像素点都得到相同的处理过程,每个像素点之间都会用相同的方法用于特征提取,最终形成一套可以被快速复制,支持高并发的实体识别系统。
  3. 更敏捷的认知迭代。AI 能够不断根据新的数据调整自己,纠正已有偏差的参数,做到在整体所有图片上最好的识别效果。例如阿里的图像 AI,就建成了可以支持以支持数十亿图片分类训练的超大平台。凭借集群化的大规模训练,AI 甚至可以做到一日之内看完普通人类数十年内看到的景象。

这样循环往复的训练下,AI 识别的实体数就能够超出人类的认知范围。

image.png

用了 60 年,AI 才学会人类与生俱来的“天赋”

AI 的这种能力不是生来就有的,甚至在计算机诞生之初,都不具备视觉功能。

对人类而言,“认人”似乎是与生俱来的本能:刚出生几天的婴儿就能模仿父母的表情,我们可以毫不费力地从照片中找到熟悉的面孔,即便是暗淡灯光下,我们仍能认出楼梯末端的朋友;

这让我们甚至难以意识到这是亿万年来进化而来的神奇能力:只凭极少细节就分辨彼此。

然而,计算机并没有几亿年的演化时间教它辨别色彩、轮廓和形状等特征。“认人识物”这项对人类而言轻而易举的能力,对计算机而言却是步步维艰。

世界上第一台照相机出现在 1839 年,在计算机诞生的 20 世级 40 年代,照相机已经成为了一种大众技术。但让计算机和照相机实现真正意义上的交融,却让人类科学家付出了 10 年努力。

中间的鸿沟在于把图片翻译成计算机能理解的语言。直至 1959 年,计算机终于第一次“解码”了来自人类世界里的图像,美国科学家 Russell 研制了一台灰度处理器,可以把图片信息为二进制机器所理解的语言。

要让AI真正完成认知上的超越,仅给机器装上“眼睛”是不够的,还要赋予AI像人类一样的大脑。

这项工作的重大进展来自神经生物学的启发。1981 年,神经生物学家大卫·休伯尔和托斯坦·维厄瑟尔发现人类视觉系统是一个分级的结构,人工智能科学家可以仿照人类大脑的认知结构,以人造神经元作为神经细胞,用不同方式连接的神经元代替不同的视皮层区域,以此赋予 AI 像人类一样的思考能力。

4.png

世界上第一款现代意义上卷神经网络的发明者 Lecun,并成功教计算机识别出数字

神经网络的发明,推动了视觉 AI 在 2012 年完成了革命性的突破。这年,搭载神经网络的 AI ImageNet 大规模视觉识别竞赛(ILSVRC)上一骑绝尘,首次在识别准确率上完成了对人类的超越。

至此,人类给计算机装上的这双“眼睛”终于有了媲美人类认知的能力,但识别万物只是计算机 AI 发展的第一阶段。

从“看见”到“看懂”,我们在路上

对于我们人类而言,视觉不仅仅是为了看见,而是为了对看见的事物做出反应,更好地理解这个世界。因此,阿里科学家的也希望能够赋予计算机这样的能力。

image.png

视觉对话技术有望帮助视障人士再造一双 AI 眼,通过提问阿里 AI,盲人可以随时了解自身所处的周围环境

阿里图像 AI 正在加大投入对视觉对话方向的研究,这项技术需要综合集成图像识别、关系推理与自然语言理解三大能力。

它要求 AI 不仅能够有效识别图片里的实体以及它们之间的关系,还要推理出图片所描述的事件内容,同时顺畅与人类讨论,最终推动 AI 拥有对真实视觉世界的理解与推断能力。

前不久,谷歌运用 1000 块 TPU 重建了完整果蝇大脑神经图,整整 40 万亿像素,这是目前 AI 在神经元研究上的最新进步。

果蝇被作为试验动物,它的大脑神经元为 10 万个,而人类大脑的中的神经元多达 1000 亿个。在人类的大脑面前,目前的 AI 还只像个孩子。

回顾计算机视觉技术的重要突破,都来自于人类将自身能力成功的“复制”给了 AI。人类越了解自身,就越能创造出更高级的 AI。最终在 AI 强大的进化能力下,也会帮助人类扩展出新的认知。

image.png

原文链接:
https://mp.weixin.qq.com/s/Kah7RMHkW5WQRsDAZxbesw

目录
相关文章
|
3天前
|
存储 人工智能 自然语言处理
OmniThink:浙大联合阿里通义开源 AI 写作框架,基于深度思考扩展知识边界,实时展示思考过程
OmniThink 是浙江大学与阿里通义实验室联合开发的机器写作框架,通过模拟人类迭代扩展和反思过程,生成高质量长篇文章,显著提升知识密度和内容深度。
52 12
OmniThink:浙大联合阿里通义开源 AI 写作框架,基于深度思考扩展知识边界,实时展示思考过程
|
11天前
|
人工智能 缓存 Ubuntu
AI+树莓派=阿里P8技术专家。模拟面试、学技术真的太香了 | 手把手教学
本课程由阿里P8技术专家分享,介绍如何使用树莓派和阿里云服务构建AI面试助手。通过模拟面试场景,讲解了Java中`==`与`equals`的区别,并演示了从硬件搭建、语音识别、AI Agent配置到代码实现的完整流程。项目利用树莓派作为核心,结合阿里云的实时语音识别、AI Agent和文字转语音服务,实现了一个能够回答面试问题的智能玩偶。课程展示了AI应用的简易构建过程,适合初学者学习和实践。
71 22
|
25天前
|
人工智能 开发框架 算法
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
Qwen-Agent 是阿里通义开源的一个基于 Qwen 模型的 Agent 应用开发框架,支持指令遵循、工具使用、规划和记忆能力,适用于构建复杂的智能代理应用。
401 10
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
|
8天前
|
机器学习/深度学习 人工智能 算法
黑科技上线!AI帮你一眼看穿真实面貌
本文介绍了一种利用多模态文件信息抽取技术识别图片中物品材质的方法。通过深度学习算法和大量训练数据,该技术能精确区分不同材料的纹理、颜色等特征,广泛应用于电商、设计等领域。教程详细讲解了如何使用百炼模型服务、对象存储OSS及函数计算部署应用,帮助用户轻松提取图片中的材质信息。跟随步骤实践,人人都能成为鉴宝大师。点击阅读原文,体验图片视觉理解与属性信息提取的强大功能。
|
15天前
|
人工智能 API 开发者
阿里CEO吴泳铭-2024互联网大会发言:AI的最大价值是推动生产力变革
11月21日,2024年世界互联网大会“互联网企业家论坛”在乌镇召开。阿里巴巴CEO吴泳铭表示,AI的最大价值在于推动各行各业的生产力变革,而非仅限于开发超级APP。他强调,发展AI需建设繁荣的技术、产品和市场生态。目前,30多万家企业已接入阿里“通义”大模型,应用于代码开发、药物研发等场景。阿里巴巴坚持开源路线,全球开发者基于“通义千问”开发的衍生模型已突破7.8万个。吴泳铭认为,AI的发展需要行业共同努力,建设繁荣生态以实现高质量持续发展。
|
2月前
|
人工智能 自然语言处理 Swift
探索面向开放型问题的推理模型Marco-o1,阿里国际AI团队最新开源!
阿里国际AI团队发布的新模型Marco-o1,不仅擅长解决具有标准答案的学科问题(如代码、数学等),更强调开放式问题的解决方案。该模型采用超长CoT数据微调、MCTS扩展解空间等技术,提升了模型在翻译任务及复杂问题解决上的表现。研究团队还开源了部分数据和模型,供社区使用和进一步研究。
探索面向开放型问题的推理模型Marco-o1,阿里国际AI团队最新开源!
|
3月前
|
消息中间件 人工智能 Cloud Native
|
3月前
|
人工智能 编解码 文字识别
阿里国际AI开源Ovis1.6,多项得分超GPT-4o-mini!
阿里国际AI团队提出了一种名为Ovis (Open VISion)的新型多模态大模型的架构。
|
3月前
|
人工智能 Ubuntu Linux
安装阿里图文融合AI - AnyText心路历程(安装失败告终,心痛!)
安装阿里图文融合AI - AnyText心路历程(安装失败告终,心痛!)
|
4月前
|
人工智能 前端开发 Java
Spring Cloud Alibaba AI,阿里AI这不得玩一下
🏀闪亮主角: 大家好,我是JavaDog程序狗。今天分享Spring Cloud Alibaba AI,基于Spring AI并提供阿里云通义大模型的Java AI应用。本狗用SpringBoot+uniapp+uview2对接Spring Cloud Alibaba AI,带你打造聊天小AI。 📘故事背景: 🎁获取源码: 关注公众号“JavaDog程序狗”,发送“alibaba-ai”即可获取源码。 🎯主要目标:
145 0

热门文章

最新文章