如何解决分布式系统中的“幽灵复现”?

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 关于分布式一致性领域经典问题探讨。

01

阿里妹导读:

“幽灵复现”的问题本质属于分布式系统的“第三态”问题,即在网络系统里面,对于一个请求都有三种返回结果:成功,失败,超时未知。对于超>时未知,服务端对请求命令的处理结果可以是成功或者失败,但必须是两者中之一,不能出现前后不一致情况。

1、“幽灵复现”问题

我们知道,当前业界有很多分布式一致性复制协议,比如Paxos,Raft,Zab及Paxos的变种协议,被广泛用于实现高可用的数据一致性。Paxos组通常有3或5个互为冗余的节点组成,它允许在少数派节点发生停机故障的情况下,依然能继续提供服务,并且保证数据一致性。作为一种优化,协议一般会在节点之间选举出一个Leader专门负责发起Proposal,Leader的存在,避免了常态下并行提议的干扰,这对于提高Proposal处理的效率有很大提升。

但是考虑在一些极端异常,比如网络隔离,机器故障等情况下,Leader可能会经过多次切换和数据恢复,使用Paxos协议处理日志的备份与恢复时,可以保证确认形成多数派的日志不丢失,但是无法避免一种被称为“幽灵复现”的现象。考虑下面一种情况:

2

如上表所示,在第一轮中,A成为指定Leader,发出1-10的日志,不过后面的6-10没有形成多数派,随机宕机。随后,第二轮中,B成为指定Leader,继续发出6-20的日志(B没有看到有6-10日志的存在),这次,6以及20两条日志形成了多数派。随机再次发生切换,A回来了,从多数派拿到的最大LogId为20,因此决定补空洞,事实上,这次很大可能性是要从6开始,一直验证到20。我们逐个看下会发生什么:

  • 针对Index 6的日志,A重新走一轮basic paxos就会发现更大proposeid形成决议的6,从而放弃本地的日志6,接受已经多数派认可的日志;
  • 针对Index 7到Index 10,因为多数派没有形成有效落盘,因此A随机以本地日志发起提议并形成多数派;
  • 针对Index 11到Index 19,因为均没有形成有效落盘数据,因此,以noop形成补空洞;
  • 针对Index 20,这个最简单,接受已经多数派认可的日志;

在上面的四类情况分析中,1,3,4的问题不大。主要在场景2,相当于在第二轮并不存在的7~10,然后在第三列又重新出现了。按照Oceanbase的说法,在数据库日志同步场景的情况,这个问题是不可接受的,一个简单的例子就是转账场景,用户转账时如果返回结果超时,那么往往会查询一下转账是否成功,来决定是否重试一下。如果第一次查询转账结果时,发现未生效而重试,而转账事务日志作为幽灵复现日志重新出现的话,就造成了用户重复转账。

2、基于 Multi-Paxos 解决“幽灵复现”问题

为了处理“幽灵复现”问题,基于Multi-Paxos实现的一致性系统,可以在每条日志内容保存一个epochID,指定Proposer在生成这条日志时以当前的ProposalID作为epochID。按logID顺序回放日志时,因为leader在开始服务之前一定会写一条StartWorking日志,所以如果出现epochID相对前一条日志变小的情况,说明这是一条“幽灵复现”日志,要忽略掉这条日志(说明一下,我认这里顺序是先补空洞,然后写StartWorkingID,然后提供服务)。

3

以上个例子来说明,在Round 3,A作为leader启动时,需要日志回放重确认,index 1~5 的日志不用说的,epochID为1,然后进入epochID为2阶段,index 6 会确认为epochID为2的StartWorking日志,然后就是index 7~10,因为这个是epochID为1的日志,比上一条日志epochID小,会被忽略掉。而Index 11~19的日志,EpochID应该是要沿袭自己作为Leader看到的上上一轮StartWorkingID(当然,ProposeID还是要维持在3的),或者因为是noop日志,可以特殊化处理,即这部分日志不参与epochID的大小比较。然后index 20日志也会被重新确认。最后,在index 21写入StartWorking日志,并且被大多数确认后,A作为leader开始接收请求。

3、基于Raft解决“幽灵复现”问题

3.1 关于Raft日志恢复

首先,我们聊一下Raft的日志恢复,在 Raft 中,每次选举出来的Leader一定包含已经Committed的数据(抽屉原理,选举出来的Leader是多数中数据最新的,一定包含已经在多数节点上Commit的数据),新的Leader将会覆盖其他节点上不一致的数据。虽然新选举出来的Leader一定包括上一个Term的Leader已经Committed的Log Entry,但是可能也包含上一个Term的Leader未Committed的Log Entry。这部分Log Entry需要转变为Committed,相对比较麻烦,需要考虑Leader多次切换且未完成Log Recovery,需要保证最终提案是一致的,确定的,不然就会产生所谓的幽灵复现问题。

因此,Raft中增加了一个约束:对于之前Term的未Committed数据,修复到多数节点,且在新的Term下至少有一条新的Log Entry被复制或修复到多数节点之后,才能认为之前未Committed的Log Entry转为Committed。

为了将上一个Term未Committed的Log Entry转为Committed,Raft 的解决方案如下:

Raft算法要求Leader当选后立即追加一条Noop的特殊内部日志,并立即同步到其它节点,实现前面未Committed日志全部隐式提交。

从而保证了两个事情:

  • 通过最大Commit原则保证不会丢数据,即是保证所有的已经Committed的Log Entry不会丢;
  • 保证不会读到未Committed的数据,因为只有Noop被大多数节点同意并提交了之后(这样可以连带往期日志一起同步),服务才会对外正常工作;Noop日志本身也是一个分界线,Noop之前的Log Entry被提交,之后的Log Entry将会被丢弃。

3.2 Raft解决“幽灵复现”问题

4

针对第一小节的场景,Raft中是不会出现第三轮A当选leader的情况,首先对于选举,候选人对比的是最后一条日志的任期号(lastLogTerm)和日志的长度(lastLogIndex)。B、C的lastLogTerm(t2)和lastLogIndex(20)都比A的lastLogTerm(t1)和lastLogIndex(10)大,因此leader只能出现在B、C之内。假设C成为leader后,Leader运行过程中会进行副本的修复,对于A来说,就是从log index为6的位置开始,C将会把自己的index为6及以后的log entry复制给A,因此A原来的index 6-10的日志删除,并保持与C一致。最后C会向follower发送noop的log entry,如果被大多数都接收提交后,才开始正常工作,因此不会出现index 7-10能读到值的情况。

这里考虑另一个更通用的幽灵复现场景。考虑存在以下日志场景:
5

1)Round 1,A节点为leader,Log entry 5,6内容还没有commit,A节点发生宕机。这个时候client 是查询不到 Log entry 5,6里面的内容。

2)Round 2,B成为Leader, B中Log entry 3, 4内容复制到C中, 并且在B为主的期间内没有写入任何内容。

3)Round 3,A 恢复并且B、C发生重启,A又重新选为leader, 那么Log entry 5, 6内容又被复制到B和C中,这个时候client再查询就查询到Log entry 5, 6 里面的内容了。

6

Raft里面加入了新Leader 必须写入一条当前Term的Log Entry 就可以解决这个问题, 其实和MultiPaxos提到的写入一个StartWorking 日志是一样的做法, 当B成为Leader后,会写入一个Term 3的noop日志,这里解决了上面所说的两个问题:

Term 3的noop日志commit前,B的index 3,4的日志内容一定会先复制到C中,实现了最大commit原则,保证不会丢数据,已经 commit 的 log entry 不会丢。
就算A节点恢复过来, 由于A的lastLogTerm比B和C都小,也无法成了Leader, 那么A中未完成的commit只是会被drop,所以后续的读也就不会读到Log Entry 5,6里面的内容。

**4、基于Zab解决“幽灵复现”问题

**
4.1 关于Zab的日志恢复

Zab在工作时分为原子广播和崩溃恢复两个阶段,原子广播工作过程也可以类比raft提交一次事务的过程。

崩溃恢复又可以细分为Leader选举和数据同步两个阶段。

早期的Zab协议选举出来的Leader满足下面的条件:

a) 新选举的Leader节点含有本轮次所有竞选者最大的zxid,也可以简单认为Leader拥有最新数据。该保证最大程度确保Leader具有最新数据。

b) 竞选Leader过程中进行比较的zxid,是基于每个竞选者已经commited的数据生成。

zxid是64位高32位是epoch编号,每经过一次Leader选举产生一个新的leader,新的leader会将epoch号+1,低32位是消息计数器,每接收到一条消息这个值+1,新leader选举后这个值重置为0。这样设计的好处在于老的leader挂了以后重启,它不会被选举为leader,因此此时它的zxid肯定小于当前新的leader。当老的leader作为follower接入新的leader后,新的leader会让它将所有的拥有旧的epoch号的未被commit的proposal清除。
7
选举出leader后,进入日志恢复阶段,会根据每个Follower节点发送过来各自的zxid,决定给每个Follower发送哪些数据,让Follower去追平数据,从而满足最大commit原则,保证已commit的数据都会复制给Follower,每个Follower追平数据后均会给Leader进行ACK,当Leader收到过半Follower的ACK后,此时Leader开始工作,整个zab协议也就可以进入原子广播阶段。

4.2 Zab解决“幽灵复现”问题

对于第 1 节的场景,根据ZAB的选举阶段的机制保证,每次选举后epoch均会+1,并作为下一轮次zxid的最高32位。所以,假设Round 1阶段,A,B,C的EpochId是1,那么接下来的在Round 2阶段,EpochId为2,所有基于这个Epoch产生的zxid一定大于A上所有的zxid。于是,在Round 3,由于B, C的zxid均大于A,所以A是不会被选为Leader的。A作为Follower加入后,其上的数据会被新Leader上的数据覆盖掉。可见,对于情况一,zab是可以避免的。

8

对于 3.2 节的场景,在Round 2,B选为leader后,并未产生任何事务。在Round 3选举,由于A,B,C的最新日志没变,所以A的最后一条日志zxid比B和C的大,因此A会选为leader,A将数据复制给B,C后,就会出现”幽灵复现“现象的。

为了解决“幽灵复现”问题,最新Zab协议中,每次leader选举完成后,都会保存一个本地文件,用来记录当前EpochId(记为CurrentEpoch),在选举时,会先读取CurrentEpoch并加入到选票中,发送给其他候选人,候选人如果发现CurrentEpoch比自己的小,就会忽略此选票,如果发现CurrentEpoch比自己的大,就会选择此选票,如果相等则比较zxid。因此,对于此问题,Round 1中,A,B,C的CurrentEpoch为2;Round 2,A的CurrentEpoch为2,B,C的CurrentEpoch为3;Round 3,由于B,C的CurrentEpoch比A的大,所以A无法成为leader。

5、 进一步探讨

在阿里云的女娲一致性系统里面,做法也是类似于Raft与Zab,确保能够制造幽灵复现的角色无法在新的一轮选举为leader,从而避免幽灵日志再次出现。从服务端来看“幽灵复现”问题,就是在failover情况下,新的leader不清楚当前的committed index,也就是分不清log entry是committed状态还是未committed状态,所以需要通过一定的日志恢复手段,保证已经提交的日志不会被丢掉(最大 commit 原则),并且通过一个分界线(如MultiPaxos的StartWorking,Raft的noop,Zab的CurrentEpoch)来决定日志将会被commit还是被drop,从而避免模糊不一的状态。“幽灵复现”的问题本质属于分布式系统的“第三态”问题,即在网络系统里面, 对于一个请求都有三种返回结果:成功,失败,超时未知。对于超时未知,服务端对请求命令的处理结果可以是成功或者失败,但必须是两者中之一,不能出现前后不一致情况。在客户端中,请求收到超时,那么客户端是不知道当前底层是处于什么状况的,成功或失败都不清楚,所以一般客户端的做法是重试,那么底层apply的业务逻辑需要保证幂等性,不然重试会导致数据不一致。

参考文章:

  1. In Search of an Understandable Consensus Algorithm - Diego Ongaro and John Ousterhout
    https://raft.github.io/raft.pdf?spm=ata.13261165.0.0.337d6f55qtohyc&file=raft.pdf
  2. Paxos Made Simple – Leslie Lamport
    https://lamport.azurewebsites.net/pubs/paxos-simple.pdf?spm=ata.13261165.0.0.337d6f55qtohyc&file=paxos-simple.pdf
  3. Oceanbase列传 – 郁白
    http://oceanbase.org.cn/?spm=ata.13261165.0.0.337d6f55qtohyc&p=111
  4. 关于Paxos "幽灵复现"问题看法 – 陈宗志
    https://zhuanlan.zhihu.com/p/40175038?spm=ata.13261165.0.0.337d6f55qtohyc
  5. zookeeper原理解析
    https://www.cnblogs.com/wxd0108/p/6251729.html?spm=ata.13261165.0.0.337d6f55qtohyc
相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
算法 数据库 OceanBase
如何解决分布式系统中的“幽灵复现”?
“幽灵复现”的问题本质属于分布式系统的“第三态”问题,即在网络系统里面,对于一个请求都有三种返回结果:成功,失败,超时未知。对于超时未知,服务端对请求命令的处理结果可以是成功或者失败,但必须是两者中之一,不能出现前后不一致情况。
1068 0
如何解决分布式系统中的“幽灵复现”?
|
1月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
3月前
|
NoSQL Redis
基于Redis的高可用分布式锁——RedLock
这篇文章介绍了基于Redis的高可用分布式锁RedLock的概念、工作流程、获取和释放锁的方法,以及RedLock相比单机锁在高可用性上的优势,同时指出了其在某些特殊场景下的不足,并提到了ZooKeeper作为另一种实现分布式锁的方案。
112 2
基于Redis的高可用分布式锁——RedLock
|
3月前
|
缓存 NoSQL Java
SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解分布式情况下如何添加分布式锁 【续篇】
这篇文章是关于如何在SpringBoot应用中整合Redis并处理分布式场景下的缓存问题,包括缓存穿透、缓存雪崩和缓存击穿。文章详细讨论了在分布式情况下如何添加分布式锁来解决缓存击穿问题,提供了加锁和解锁的实现过程,并展示了使用JMeter进行压力测试来验证锁机制有效性的方法。
SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解分布式情况下如何添加分布式锁 【续篇】
|
8天前
|
NoSQL Redis
Redis分布式锁如何实现 ?
Redis分布式锁通过SETNX指令实现,确保仅在键不存在时设置值。此机制用于控制多个线程对共享资源的访问,避免并发冲突。然而,实际应用中需解决死锁、锁超时、归一化、可重入及阻塞等问题,以确保系统的稳定性和可靠性。解决方案包括设置锁超时、引入Watch Dog机制、使用ThreadLocal绑定加解锁操作、实现计数器支持可重入锁以及采用自旋锁思想处理阻塞请求。
41 16
|
1月前
|
缓存 NoSQL Java
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
59 3
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
|
1月前
|
NoSQL Redis 数据库
计数器 分布式锁 redis实现
【10月更文挑战第5天】
47 1
|
1月前
|
NoSQL 算法 关系型数据库
Redis分布式锁
【10月更文挑战第1天】分布式锁用于在多进程环境中保护共享资源,防止并发冲突。通常借助外部系统如Redis或Zookeeper实现。通过`SETNX`命令加锁,并设置过期时间防止死锁。为避免误删他人锁,加锁时附带唯一标识,解锁前验证。面对锁提前过期的问题,可使用守护线程自动续期。在Redis集群中,需考虑主从同步延迟导致的锁丢失问题,Redlock算法可提高锁的可靠性。
74 4
|
1月前
|
存储 缓存 NoSQL
大数据-38 Redis 高并发下的分布式缓存 Redis简介 缓存场景 读写模式 旁路模式 穿透模式 缓存模式 基本概念等
大数据-38 Redis 高并发下的分布式缓存 Redis简介 缓存场景 读写模式 旁路模式 穿透模式 缓存模式 基本概念等
61 4
|
1月前
|
缓存 NoSQL Ubuntu
大数据-39 Redis 高并发分布式缓存 Ubuntu源码编译安装 云服务器 启动并测试 redis-server redis-cli
大数据-39 Redis 高并发分布式缓存 Ubuntu源码编译安装 云服务器 启动并测试 redis-server redis-cli
55 3

热门文章

最新文章