Atlas(元数据管理)从扫盲到和Hive、HBase、Kafka、Flink等集成开发

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
数据管理 DMS,安全协同 3个实例 3个月
推荐场景:
学生管理系统数据库
简介:

Atlas_1_

先对数据分个类

企业数据管理的内容及范畴通常包括交易数据、主数据以及元数据。
(1)交易数据:用于纪录业务事件,如客户的订单,投诉记录,客服申请等,它往往用于描述在某一个时间点上业务系统发生的行为。
(2)主数据:主数据则定义企业核心业务对象,如客户、产品、地址等,与交易流水信息不同,主数据一旦被记录到数据库中,需要经常对其进行维护,从而确保其时效性和准确性;主数据还包括关系数据,用以描述主数据之间的关系,如客户与产品的关系、产品与地域的关系、客户与客户的关系、产品与产品的关系等。
(3)元数据:即关于数据的数据,用以描述数据及其环境的结构化信息,便于查找、理解、使用和管理数据。

什么是元数据管理

我们前面讲解的技术和平台都在解决主数据和交易数据的采集、加工、存储、计算等问题。但面对海量且持续增加的各式各样的数据时,你一定想知道数据从哪里来以及它如何随时间而变化?采用Hadoop必须考虑数据管理的实际情况,元数据与数据治理成为企业级数据湖的重要部分。
所谓元数据管理其实通俗来讲就两点:
(1)把各个组件(一般是存储)的元数据收集起来统一管控
(2)利用这些收集的元数据去实现各种上层应用以满足各种数据治理场景(数组资产目录、数据分类、搜索与血缘等等)

Atlas是什么

Apache Atlas是Hadoop社区为解决Hadoop生态系统的元数据治理问题而产生的开源项目,它为Hadoop集群提供了包括 数据分类、集中策略引擎、数据血缘、安全和生命周期管理在内的元数据治理核心能力。可以帮助企业构建其数据资产目录,对这些资产进行分类和管理,并为数据分析师和数据治理团队,提供围绕这些数据资产的协作功能。
Atlas不尽致力于管理共享元数据、数据分级、审计、安全性以及数据保护等方面,同时努力与Apache Ranger整合,用于数据权限控制策略。
Apache Atlas是hadoop的数据治理和元数据框架,它提供了一个可伸缩和可扩展的核心基础数据治理服务集,使得 企业可以有效的和高效的满足Hadoop中的合规性要求,并允许与整个企业的数据生态系统集成。
Atlas_2

Atlas架构与原理

Atlas 是一个可伸缩且功能丰富的数据管理系统,深度集成了 Hadoop 大数据组件。简单理解就是一个跟 Hadoop 关系紧密的,可以用来做元数据管理的一个系统,整个结构 图如下所示:
Atlas_3

Atlas核心功能分层及说明

Atlas_4

集成Hive

集成原理
Atlas_5

验证Hive元数据采集效果

(1)先查看Atlas里是否有Hive元数据
Atlas_6
(2)进入Hive创建一个库表
create database if not exists foo;
Atlas_7
(3)再次进入Atlas查看元数据
Atlas_8

历史元数据处理

在上线Atlas之前Hive可能运行很久了,所以历史上的元数据无法触发hook,因此需要一个工具来做初始化导入。
Apache Atlas提供了一个命令行脚本 import-hive.sh ,用于将Apache Hive数据库和表的元数据导入Apache Atlas。该脚本可用于使用Apache Hive中的数据库/表初始化Apache Atlas。此脚本支持导入特定表的元数据,特定数据库中的表或所有数据库和表。
Atlas_9
导入工具调用的是对应的Bridge:org.apache.atlas.hive.bridge.HiveMetaStoreBridge执行导入脚本任意找一台安装过Atlas client的节点,执行如下命令:
注意:一定要进入atlas用户,因为Atlas的Linux管理账户是atlas,其他账户下可能会报没有权限的错误。
脚本执行过程中会要求输入Atlas的管理员账号/密码(admin/admin%123),看到如下信息就成功了:
Atlas_10

查看元数据

Atlas_11

相关实践学习
MySQL基础-学生管理系统数据库设计
本场景介绍如何使用DMS工具连接RDS,并使用DMS图形化工具创建数据库表。
相关文章
|
12天前
|
消息中间件 关系型数据库 MySQL
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
|
14天前
|
消息中间件 关系型数据库 MySQL
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
本教程展示如何使用Flink CDC YAML快速构建从MySQL到Kafka的流式数据集成作业,涵盖整库同步和表结构变更同步。无需编写Java/Scala代码或安装IDE,所有操作在Flink CDC CLI中完成。首先准备Flink Standalone集群和Docker环境(包括MySQL、Kafka和Zookeeper),然后通过配置YAML文件提交任务,实现数据同步。教程还介绍了路由变更、写入多个分区、输出格式设置及上游表名到下游Topic的映射等功能,并提供详细的命令和示例。最后,包含环境清理步骤以确保资源释放。
263 2
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
|
1月前
|
Java 关系型数据库 MySQL
SpringBoot 通过集成 Flink CDC 来实时追踪 MySql 数据变动
通过详细的步骤和示例代码,您可以在 SpringBoot 项目中成功集成 Flink CDC,并实时追踪 MySQL 数据库的变动。
219 43
|
26天前
|
消息中间件 Kafka 流计算
docker环境安装kafka/Flink/clickhouse镜像
通过上述步骤和示例,您可以系统地了解如何使用Docker Compose安装和配置Kafka、Flink和ClickHouse,并进行基本的验证操作。希望这些内容对您的学习和工作有所帮助。
158 28
|
1月前
|
SQL 人工智能 关系型数据库
Flink CDC YAML:面向数据集成的 API 设计
本文整理自阿里云智能集团 Flink PMC Member & Committer 徐榜江(雪尽)在 FFA 2024 分论坛的分享,涵盖四大主题:Flink CDC、YAML API、Transform + AI 和 Community。文章详细介绍了 Flink CDC 的发展历程及其优势,特别是 YAML API 的设计与实现,以及如何通过 Transform 和 AI 模型集成提升数据处理能力。最后,分享了社区动态和未来规划,欢迎更多开发者加入开源社区,共同推动 Flink CDC 的发展。
399 12
Flink CDC YAML:面向数据集成的 API 设计
|
11天前
|
SQL 弹性计算 DataWorks
Flink CDC 在阿里云 DataWorks 数据集成入湖场景的应用实践
Flink CDC 在阿里云 DataWorks 数据集成入湖场景的应用实践
|
11天前
|
SQL 人工智能 关系型数据库
Flink CDC YAML:面向数据集成的 API 设计
Flink CDC YAML:面向数据集成的 API 设计
|
10月前
|
SQL 数据采集 数据挖掘
大数据行业应用之Hive数据分析航班线路相关的各项指标
大数据行业应用之Hive数据分析航班线路相关的各项指标
242 1
|
5月前
|
SQL 分布式计算 Java
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
128 0
|
8月前
|
SQL 分布式计算 大数据
大数据处理平台Hive详解
【7月更文挑战第15天】Hive作为基于Hadoop的数据仓库工具,在大数据处理和分析领域发挥着重要作用。通过提供类SQL的查询语言,Hive降低了数据处理的门槛,使得具有SQL背景的开发者可以轻松地处理大规模数据。然而,Hive也存在查询延迟高、表达能力有限等缺点,需要在实际应用中根据具体场景和需求进行选择和优化。