Atlas(元数据管理)从扫盲到和Hive、HBase、Kafka、Flink等集成开发

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
数据管理 DMS,安全协同 3个实例 3个月
推荐场景:
学生管理系统数据库
简介:

Atlas_1_

先对数据分个类

企业数据管理的内容及范畴通常包括交易数据、主数据以及元数据。
(1)交易数据:用于纪录业务事件,如客户的订单,投诉记录,客服申请等,它往往用于描述在某一个时间点上业务系统发生的行为。
(2)主数据:主数据则定义企业核心业务对象,如客户、产品、地址等,与交易流水信息不同,主数据一旦被记录到数据库中,需要经常对其进行维护,从而确保其时效性和准确性;主数据还包括关系数据,用以描述主数据之间的关系,如客户与产品的关系、产品与地域的关系、客户与客户的关系、产品与产品的关系等。
(3)元数据:即关于数据的数据,用以描述数据及其环境的结构化信息,便于查找、理解、使用和管理数据。

什么是元数据管理

我们前面讲解的技术和平台都在解决主数据和交易数据的采集、加工、存储、计算等问题。但面对海量且持续增加的各式各样的数据时,你一定想知道数据从哪里来以及它如何随时间而变化?采用Hadoop必须考虑数据管理的实际情况,元数据与数据治理成为企业级数据湖的重要部分。
所谓元数据管理其实通俗来讲就两点:
(1)把各个组件(一般是存储)的元数据收集起来统一管控
(2)利用这些收集的元数据去实现各种上层应用以满足各种数据治理场景(数组资产目录、数据分类、搜索与血缘等等)

Atlas是什么

Apache Atlas是Hadoop社区为解决Hadoop生态系统的元数据治理问题而产生的开源项目,它为Hadoop集群提供了包括 数据分类、集中策略引擎、数据血缘、安全和生命周期管理在内的元数据治理核心能力。可以帮助企业构建其数据资产目录,对这些资产进行分类和管理,并为数据分析师和数据治理团队,提供围绕这些数据资产的协作功能。
Atlas不尽致力于管理共享元数据、数据分级、审计、安全性以及数据保护等方面,同时努力与Apache Ranger整合,用于数据权限控制策略。
Apache Atlas是hadoop的数据治理和元数据框架,它提供了一个可伸缩和可扩展的核心基础数据治理服务集,使得 企业可以有效的和高效的满足Hadoop中的合规性要求,并允许与整个企业的数据生态系统集成。
Atlas_2

Atlas架构与原理

Atlas 是一个可伸缩且功能丰富的数据管理系统,深度集成了 Hadoop 大数据组件。简单理解就是一个跟 Hadoop 关系紧密的,可以用来做元数据管理的一个系统,整个结构 图如下所示:
Atlas_3

Atlas核心功能分层及说明

Atlas_4

集成Hive

集成原理
Atlas_5

验证Hive元数据采集效果

(1)先查看Atlas里是否有Hive元数据
Atlas_6
(2)进入Hive创建一个库表
create database if not exists foo;
Atlas_7
(3)再次进入Atlas查看元数据
Atlas_8

历史元数据处理

在上线Atlas之前Hive可能运行很久了,所以历史上的元数据无法触发hook,因此需要一个工具来做初始化导入。
Apache Atlas提供了一个命令行脚本 import-hive.sh ,用于将Apache Hive数据库和表的元数据导入Apache Atlas。该脚本可用于使用Apache Hive中的数据库/表初始化Apache Atlas。此脚本支持导入特定表的元数据,特定数据库中的表或所有数据库和表。
Atlas_9
导入工具调用的是对应的Bridge:org.apache.atlas.hive.bridge.HiveMetaStoreBridge执行导入脚本任意找一台安装过Atlas client的节点,执行如下命令:
注意:一定要进入atlas用户,因为Atlas的Linux管理账户是atlas,其他账户下可能会报没有权限的错误。
脚本执行过程中会要求输入Atlas的管理员账号/密码(admin/admin%123),看到如下信息就成功了:
Atlas_10

查看元数据

Atlas_11

相关实践学习
MySQL基础-学生管理系统数据库设计
本场景介绍如何使用DMS工具连接RDS,并使用DMS图形化工具创建数据库表。
相关文章
|
3天前
|
消息中间件 Kafka 流计算
docker环境安装kafka/Flink/clickhouse镜像
通过上述步骤和示例,您可以系统地了解如何使用Docker Compose安装和配置Kafka、Flink和ClickHouse,并进行基本的验证操作。希望这些内容对您的学习和工作有所帮助。
46 28
|
11天前
|
SQL 人工智能 关系型数据库
Flink CDC YAML:面向数据集成的 API 设计
本文整理自阿里云智能集团 Flink PMC Member & Committer 徐榜江(雪尽)在 FFA 2024 分论坛的分享,涵盖四大主题:Flink CDC、YAML API、Transform + AI 和 Community。文章详细介绍了 Flink CDC 的发展历程及其优势,特别是 YAML API 的设计与实现,以及如何通过 Transform 和 AI 模型集成提升数据处理能力。最后,分享了社区动态和未来规划,欢迎更多开发者加入开源社区,共同推动 Flink CDC 的发展。
319 12
Flink CDC YAML:面向数据集成的 API 设计
|
14天前
|
Java 关系型数据库 MySQL
SpringBoot 通过集成 Flink CDC 来实时追踪 MySql 数据变动
通过详细的步骤和示例代码,您可以在 SpringBoot 项目中成功集成 Flink CDC,并实时追踪 MySQL 数据库的变动。
118 43
|
3月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
234 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
3月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
99 1
|
4月前
|
消息中间件 关系型数据库 MySQL
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
373 0
|
4月前
|
消息中间件 NoSQL Kafka
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
294 0
|
4月前
|
消息中间件 资源调度 大数据
大数据-112 Flink DataStreamAPI 程序输入源 DataSource 基于文件、集合、Kafka连接器
大数据-112 Flink DataStreamAPI 程序输入源 DataSource 基于文件、集合、Kafka连接器
81 0
|
4月前
|
消息中间件 NoSQL Kafka
Flink-10 Flink Java 3分钟上手 Docker容器化部署 JobManager TaskManager Kafka Redis Dockerfile docker-compose
Flink-10 Flink Java 3分钟上手 Docker容器化部署 JobManager TaskManager Kafka Redis Dockerfile docker-compose
112 4
|
4月前
|
消息中间件 Java Kafka
Flink-07 Flink Java 3分钟上手 滚动窗口 事件驱动 Kafka TumblingWindow GlobalWindow CountWindow
Flink-07 Flink Java 3分钟上手 滚动窗口 事件驱动 Kafka TumblingWindow GlobalWindow CountWindow
56 7

热门文章

最新文章