指数退避(Exponential backoff)在网络请求中的应用

简介: ## 一、背景 最近做云服务 API 测试项目的过程中,发现某些时候会大批量调用 API,从而导致限流的报错。在遇到这种报错时,传统的重试策略是每隔一段时间重试一次。但由于是固定的时间重试一次,重试时又会有大量的请求在同一时刻涌入,会不断地造成限流。 这让我回想起两年前在查阅[Celery Task 文档](http://docs.celeryproject.org/en/latest

一、背景

最近做云服务 API 测试项目的过程中,发现某些时候会大批量调用 API,从而导致限流的报错。在遇到这种报错时,传统的重试策略是每隔一段时间重试一次。但由于是固定的时间重试一次,重试时又会有大量的请求在同一时刻涌入,会不断地造成限流。

这让我回想起两年前在查阅Celery Task 文档的时候发现可以为任务设置 retry_backoff 的经历,它让任务在失败时以 指数退避 的方式进行重试。那么指数退避究竟是什么样的呢?

二、指数退避

根据 wiki 上对 Exponential backoff 的说明,指数退避是一种通过反馈,成倍地降低某个过程的速率,以逐渐找到合适速率的算法。

在以太网中,该算法通常用于冲突后的调度重传。根据时隙和重传尝试次数来决定延迟重传。

c 次碰撞后(比如请求失败),会选择 0 和 $2^c-1$ 之间的随机值作为时隙的数量。

  • 对于第 1 次碰撞来说,每个发送者将会等待 0 或 1 个时隙进行发送。
  • 而在第 2 次碰撞后,发送者将会等待 0 到 3( 由 $2^2-1$ 计算得到)个时隙进行发送。
  • 而在第 3 次碰撞后,发送者将会等待 0 到 7( 由 $2^3-1$ 计算得到)个时隙进行发送。
  • 以此类推……

随着重传次数的增加,延迟的程度也会指数增长。

说的通俗点,每次重试的时间间隔都是上一次的两倍。

三、指数退避的期望值

考虑到退避时间的均匀分布,退避时间的数学期望是所有可能性的平均值。也就是说,在 c 次冲突之后,退避时隙数量在 [0,1,...,N] 中,其中 $N=2^c-1$ ,则退避时间的数学期望(以时隙为单位)是

$$E(c)=\frac{1}{N+1}\sum_{i=0}^{N}{i}=\frac{1}{N+1}\frac{N(N+1)}{2}=\frac{N}{2}=\frac{2^c-1}{2}$$

那么对于前面讲到的例子来说:

  • 第 1 次碰撞后,退避时间期望为 $E(1)=\frac{2^1-1}{2}=0.5$
  • 第 2 次碰撞后,退避时间期望为 $E(2)=\frac{2^2-1}{2}=1.5$
  • 第 3 次碰撞后,退避时间期望为 $E(3)=\frac{2^3-1}{2}=3.5$

四、指数退避的应用

4.1 Celery 中的指数退避算法

来看下 celery/utils/time.py 中获取指数退避时间的函数:

def get_exponential_backoff_interval(
    factor,
    retries,
    maximum,
    full_jitter=False
):
    """Calculate the exponential backoff wait time."""
    # Will be zero if factor equals 0
    countdown = factor * (2 ** retries)
    # Full jitter according to
    # https://www.awsarchitectureblog.com/2015/03/backoff.html
    if full_jitter:
        countdown = random.randrange(countdown + 1)
    # Adjust according to maximum wait time and account for negative values.
    return max(0, min(maximum, countdown))

这里 factor 是退避系数,作用于整体的退避时间。而 retries 则对应于上文的 c(也就是碰撞次数)。核心内容 countdown = factor * (2 ** retries) 和上文提到的指数退避算法思路一致。
在此基础上,可以将 full_jitter 设置为 True,含义是对退避时间做一个“抖动”,以具有一定的随机性。最后呢,则是限定给定值不能超过最大值 maximum,以避免无限长的等待时间。不过一旦取最大的退避时间,也就可能导致多个任务同时再次执行。更多见 Task.retry_jitter

4.2 《UNIX 环境高级编程》中的连接示例

在 《UNIX 环境高级编程》(第 3 版)的 16.4 章节中,也有一个使用指数退避来建立连接的示例:

#include "apue.h"
#include <sys/socket.h>

#define MAXSLEEP 128

int connect_retry(int domain, int type, int protocol,
                  const struct sockaddr *addr, socklen_t alen)
{
    int numsec, fd;

    /*
    * 使用指数退避尝试连接
    */
    for (numsec = 1; numsec < MAXSLEEP; numsec <<= 1)
    {
        if (fd = socket(domain, type, protocol) < 0)
            return (-1);
        if (connect(fd, addr, alen) == 0)
        {
            /*
            * 连接接受
            */
            return (fd);
        }
        close(fd);

        /*
        * 延迟后重试
        */
        if (numsec <= MAXSLEEP / 2)
            sleep(numsec);
    }
    return (-1);
}

如果连接失败,进程会休眠一小段时间(numsec),然后进入下次循环再次尝试。每次循环休眠时间是上一次的 2 倍,直到最大延迟 1 分多钟,之后便不再重试。

总结

回到开头的问题,在遇到限流错误的时候,通过指数退避算法进行重试,我们可以最大程度地避免再次限流。相比于固定时间重试,指数退避加入了时间放大性和随机性,从而变得更加“智能”。至此,我们再也不用担心限流让整个测试程序运行中断了~

目录
相关文章
|
2月前
|
人工智能 运维 物联网
AI在蜂窝网络中的应用前景
AI在蜂窝网络中的应用前景
54 3
|
23天前
|
Kubernetes 安全 Devops
有效抵御网络应用及API威胁,聊聊F5 BIG-IP Next Web应用防火墙
有效抵御网络应用及API威胁,聊聊F5 BIG-IP Next Web应用防火墙
54 10
有效抵御网络应用及API威胁,聊聊F5 BIG-IP Next Web应用防火墙
|
1天前
|
负载均衡 容灾 Cloud Native
云原生应用网关进阶:阿里云网络ALB Ingress 全能增强
在过去半年,ALB Ingress Controller推出了多项高级特性,包括支持AScript自定义脚本、慢启动、连接优雅中断等功能,增强了产品的灵活性和用户体验。此外,还推出了ingress2Albconfig工具,方便用户从Nginx Ingress迁移到ALB Ingress,以及通过Webhook服务实现更智能的配置校验,减少错误配置带来的影响。在容灾部署方面,支持了多集群网关,提高了系统的高可用性和容灾能力。这些改进旨在为用户提供更强大、更安全的云原生网关解决方案。
33 4
|
3天前
|
数据采集 JavaScript 前端开发
异步请求在TypeScript网络爬虫中的应用
异步请求在TypeScript网络爬虫中的应用
|
2月前
|
存储 监控 物联网
计算机网络的应用
计算机网络已深入现代生活的多个方面,包括通信与交流(电子邮件、即时通讯、社交媒体)、媒体与娱乐(在线媒体、在线游戏)、商务与经济(电子商务、远程办公)、教育与学习(在线教育平台)、物联网与智能家居、远程服务(远程医疗、智能交通系统)及数据存储与处理(云计算、数据共享与分析)。这些应用极大地方便了人们的生活,促进了社会的发展。
59 2
计算机网络的应用
|
2月前
|
机器学习/深度学习 运维 安全
图神经网络在欺诈检测与蛋白质功能预测中的应用概述
金融交易网络与蛋白质结构的共同特点是它们无法通过简单的欧几里得空间模型来准确描述,而是需要复杂的图结构来捕捉实体间的交互模式。传统深度学习方法在处理这类数据时效果不佳,图神经网络(GNNs)因此成为解决此类问题的关键技术。GNNs通过消息传递机制,能有效提取图结构中的深层特征,适用于欺诈检测和蛋白质功能预测等复杂网络建模任务。
81 2
图神经网络在欺诈检测与蛋白质功能预测中的应用概述
|
30天前
|
存储 安全 网络安全
网络安全的盾与剑:漏洞防御与加密技术的实战应用
在数字化浪潮中,网络安全成为保护信息资产的重中之重。本文将深入探讨网络安全的两个关键领域——安全漏洞的防御策略和加密技术的应用,通过具体案例分析常见的安全威胁,并提供实用的防护措施。同时,我们将展示如何利用Python编程语言实现简单的加密算法,增强读者的安全意识和技术能力。文章旨在为非专业读者提供一扇了解网络安全复杂世界的窗口,以及为专业人士提供可立即投入使用的技术参考。
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
69 8
|
2月前
|
网络协议 物联网 数据处理
C语言在网络通信程序实现中的应用,介绍了网络通信的基本概念、C语言的特点及其在网络通信中的优势
本文探讨了C语言在网络通信程序实现中的应用,介绍了网络通信的基本概念、C语言的特点及其在网络通信中的优势。文章详细讲解了使用C语言实现网络通信程序的基本步骤,包括TCP和UDP通信程序的实现,并讨论了关键技术、优化方法及未来发展趋势,旨在帮助读者掌握C语言在网络通信中的应用技巧。
50 2
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新

热门文章

最新文章