指数退避(Exponential backoff)在网络请求中的应用

简介: ## 一、背景 最近做云服务 API 测试项目的过程中,发现某些时候会大批量调用 API,从而导致限流的报错。在遇到这种报错时,传统的重试策略是每隔一段时间重试一次。但由于是固定的时间重试一次,重试时又会有大量的请求在同一时刻涌入,会不断地造成限流。 这让我回想起两年前在查阅[Celery Task 文档](http://docs.celeryproject.org/en/latest

一、背景

最近做云服务 API 测试项目的过程中,发现某些时候会大批量调用 API,从而导致限流的报错。在遇到这种报错时,传统的重试策略是每隔一段时间重试一次。但由于是固定的时间重试一次,重试时又会有大量的请求在同一时刻涌入,会不断地造成限流。

这让我回想起两年前在查阅Celery Task 文档的时候发现可以为任务设置 retry_backoff 的经历,它让任务在失败时以 指数退避 的方式进行重试。那么指数退避究竟是什么样的呢?

二、指数退避

根据 wiki 上对 Exponential backoff 的说明,指数退避是一种通过反馈,成倍地降低某个过程的速率,以逐渐找到合适速率的算法。

在以太网中,该算法通常用于冲突后的调度重传。根据时隙和重传尝试次数来决定延迟重传。

c 次碰撞后(比如请求失败),会选择 0 和 $2^c-1$ 之间的随机值作为时隙的数量。

  • 对于第 1 次碰撞来说,每个发送者将会等待 0 或 1 个时隙进行发送。
  • 而在第 2 次碰撞后,发送者将会等待 0 到 3( 由 $2^2-1$ 计算得到)个时隙进行发送。
  • 而在第 3 次碰撞后,发送者将会等待 0 到 7( 由 $2^3-1$ 计算得到)个时隙进行发送。
  • 以此类推……

随着重传次数的增加,延迟的程度也会指数增长。

说的通俗点,每次重试的时间间隔都是上一次的两倍。

三、指数退避的期望值

考虑到退避时间的均匀分布,退避时间的数学期望是所有可能性的平均值。也就是说,在 c 次冲突之后,退避时隙数量在 [0,1,...,N] 中,其中 $N=2^c-1$ ,则退避时间的数学期望(以时隙为单位)是

$$E(c)=\frac{1}{N+1}\sum_{i=0}^{N}{i}=\frac{1}{N+1}\frac{N(N+1)}{2}=\frac{N}{2}=\frac{2^c-1}{2}$$

那么对于前面讲到的例子来说:

  • 第 1 次碰撞后,退避时间期望为 $E(1)=\frac{2^1-1}{2}=0.5$
  • 第 2 次碰撞后,退避时间期望为 $E(2)=\frac{2^2-1}{2}=1.5$
  • 第 3 次碰撞后,退避时间期望为 $E(3)=\frac{2^3-1}{2}=3.5$

四、指数退避的应用

4.1 Celery 中的指数退避算法

来看下 celery/utils/time.py 中获取指数退避时间的函数:

def get_exponential_backoff_interval(
    factor,
    retries,
    maximum,
    full_jitter=False
):
    """Calculate the exponential backoff wait time."""
    # Will be zero if factor equals 0
    countdown = factor * (2 ** retries)
    # Full jitter according to
    # https://www.awsarchitectureblog.com/2015/03/backoff.html
    if full_jitter:
        countdown = random.randrange(countdown + 1)
    # Adjust according to maximum wait time and account for negative values.
    return max(0, min(maximum, countdown))

这里 factor 是退避系数,作用于整体的退避时间。而 retries 则对应于上文的 c(也就是碰撞次数)。核心内容 countdown = factor * (2 ** retries) 和上文提到的指数退避算法思路一致。
在此基础上,可以将 full_jitter 设置为 True,含义是对退避时间做一个“抖动”,以具有一定的随机性。最后呢,则是限定给定值不能超过最大值 maximum,以避免无限长的等待时间。不过一旦取最大的退避时间,也就可能导致多个任务同时再次执行。更多见 Task.retry_jitter

4.2 《UNIX 环境高级编程》中的连接示例

在 《UNIX 环境高级编程》(第 3 版)的 16.4 章节中,也有一个使用指数退避来建立连接的示例:

#include "apue.h"
#include <sys/socket.h>

#define MAXSLEEP 128

int connect_retry(int domain, int type, int protocol,
                  const struct sockaddr *addr, socklen_t alen)
{
    int numsec, fd;

    /*
    * 使用指数退避尝试连接
    */
    for (numsec = 1; numsec < MAXSLEEP; numsec <<= 1)
    {
        if (fd = socket(domain, type, protocol) < 0)
            return (-1);
        if (connect(fd, addr, alen) == 0)
        {
            /*
            * 连接接受
            */
            return (fd);
        }
        close(fd);

        /*
        * 延迟后重试
        */
        if (numsec <= MAXSLEEP / 2)
            sleep(numsec);
    }
    return (-1);
}

如果连接失败,进程会休眠一小段时间(numsec),然后进入下次循环再次尝试。每次循环休眠时间是上一次的 2 倍,直到最大延迟 1 分多钟,之后便不再重试。

总结

回到开头的问题,在遇到限流错误的时候,通过指数退避算法进行重试,我们可以最大程度地避免再次限流。相比于固定时间重试,指数退避加入了时间放大性和随机性,从而变得更加“智能”。至此,我们再也不用担心限流让整个测试程序运行中断了~

目录
相关文章
|
12天前
|
搜索推荐 程序员 调度
精通Python异步编程:利用Asyncio与Aiohttp构建高效网络应用
【10月更文挑战第5天】随着互联网技术的快速发展,用户对于网络应用的响应速度和服务质量提出了越来越高的要求。为了构建能够处理高并发请求、提供快速响应时间的应用程序,开发者们需要掌握高效的编程技术和框架。在Python语言中,`asyncio` 和 `aiohttp` 是两个非常强大的库,它们可以帮助我们编写出既简洁又高效的异步网络应用。
61 1
|
10天前
|
机器学习/深度学习 数据采集 存储
时间序列预测新突破:深入解析循环神经网络(RNN)在金融数据分析中的应用
【10月更文挑战第7天】时间序列预测是数据科学领域的一个重要课题,特别是在金融行业中。准确的时间序列预测能够帮助投资者做出更明智的决策,比如股票价格预测、汇率变动预测等。近年来,随着深度学习技术的发展,尤其是循环神经网络(Recurrent Neural Networks, RNNs)及其变体如长短期记忆网络(LSTM)和门控循环单元(GRU),在处理时间序列数据方面展现出了巨大的潜力。本文将探讨RNN的基本概念,并通过具体的代码示例展示如何使用这些模型来进行金融数据分析。
68 2
|
10天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第7天】本文将深入探讨卷积神经网络(CNN)的基本原理,以及它如何在图像识别领域中大放异彩。我们将从CNN的核心组件出发,逐步解析其工作原理,并通过一个实际的代码示例,展示如何利用Python和深度学习框架实现一个简单的图像分类模型。文章旨在为初学者提供一个清晰的入门路径,同时为有经验的开发者提供一些深入理解的视角。
|
17天前
|
安全 网络安全 区块链
网络安全与信息安全:构建数字世界的防线在当今数字化时代,网络安全已成为维护个人隐私、企业机密和国家安全的重要屏障。随着网络攻击手段的不断升级,从社交工程到先进的持续性威胁(APT),我们必须采取更加严密的防护措施。本文将深入探讨网络安全漏洞的形成原因、加密技术的应用以及提高公众安全意识的重要性,旨在为读者提供一个全面的网络安全知识框架。
在这个数字信息日益膨胀的时代,网络安全问题成为了每一个网民不可忽视的重大议题。从个人信息泄露到企业数据被盗,再到国家安全受到威胁,网络安全漏洞如同隐藏在暗处的“黑洞”,时刻准备吞噬掉我们的信息安全。而加密技术作为守护网络安全的重要工具之一,其重要性不言而喻。同时,提高公众的安全意识,也是防范网络风险的关键所在。本文将从网络安全漏洞的定义及成因出发,解析当前主流的加密技术,并强调提升安全意识的必要性,为读者提供一份详尽的网络安全指南。
|
3天前
|
编解码 自然语言处理 算法
生成对抗网络的应用有哪些
【10月更文挑战第14天】生成对抗网络的应用有哪些
|
3天前
|
机器学习/深度学习 自然语言处理 自动驾驶
神经网络有哪些应用场景呢
【10月更文挑战第14天】神经网络有哪些应用场景呢
|
6天前
|
网络协议 物联网 5G
探索未来网络:IPv6的演进与应用
【10月更文挑战第11天】 本文深入探讨了互联网协议第6版(IPv6)的发展历程、技术特点以及在现代网络中的应用。通过分析IPv6相较于IPv4的改进,阐述了其在地址空间扩展、安全性提升和自动化配置等方面的优势。同时,本文也讨论了IPv6在全球推广过程中遇到的挑战及未来的发展前景。
13 2
|
15天前
|
存储 安全 算法
网络安全与信息安全:构建数字世界的防线在数字化浪潮席卷全球的今天,网络安全与信息安全已成为维系现代社会正常运转的关键支柱。本文旨在深入探讨网络安全漏洞的成因与影响,剖析加密技术的原理与应用,并强调提升公众安全意识的重要性。通过这些综合性的知识分享,我们期望为读者提供一个全面而深刻的网络安全视角,助力个人与企业在数字时代中稳健前行。
本文聚焦网络安全与信息安全领域,详细阐述了网络安全漏洞的潜在威胁、加密技术的强大防护作用以及安全意识培养的紧迫性。通过对真实案例的分析,文章揭示了网络攻击的多样性和复杂性,强调了构建全方位、多层次防御体系的必要性。同时,结合当前技术发展趋势,展望了未来网络安全领域的新挑战与新机遇,呼吁社会各界共同努力,共筑数字世界的安全防线。
|
15天前
|
存储 安全 自动驾驶
探索未来网络:量子互联网的原理与应用
【10月更文挑战第2天】 本文旨在探讨量子互联网的基本原理、技术实现及其在通讯领域的革命性应用前景。量子互联网利用量子力学原理,如量子叠加和量子纠缠,来传输信息,有望大幅提升通信的安全性和速度。通过详细阐述量子密钥分发(QKD)、量子纠缠交换和量子中继等关键技术,本文揭示了量子互联网对未来信息社会的潜在影响。
|
13天前
|
自动驾驶 物联网 5G