LTE 物理多播信道(PMCH)简介 | 带你读《5G非正交多址技术》之十三

简介: LTE R8 的广播/多播的信道设计思想是尽量重用单播业务的物理信道的设 计,并且充分考虑广播/多播业务的特点。

第 3 章 下行广播/多播的非正交传输

| 3.1 应用场景 |

| 3.2 LTE 物理多播信道(PMCH)简介 |

LTE R8 的广播/多播的信道设计思想是尽量重用单播业务的物理信道的设 计,并且充分考虑广播/多播业务的特点。为了支持同一载波,即承载单播业务, 也承载多播业务,一个无线帧(Radio Frame,10 ms)中规定最多只能配置 6个子帧(Subframe,1 ms)作为多播子帧(Broadcast Single Frequency Network, MBSFN Subframe)。对于 FDD 系统,子帧#0,#4,#5 和#9 不能配置成 MBSFN 帧;对于 TDD 系统,子帧#0,#1,#5 和#6 不能配置成 MBSFN 帧。这些子帧 承载单播或者多播的系统消息(System Information)和小区同步信号。
MBSFN 子帧的设计首先是要保证多个小区传来的信号之间的正交性,最 直接的方法就是加长循环前缀(CP)。如果循环前缀的开销加大,但又不想改 变子帧的长度,则只能减少一个子帧中的 OFDM 符号数。PMCH 支持两类部署: (1)单播与多播共用一个载波;(2)只承载多播业务的专用载波。对于混合载波, 一个广播/多播 MBSFN 子帧内有 12 个 OFDM 符号,CP 的长度为 16.6 μs,这类多 播子帧的子载波的间距与 LTE 的单播相同,都是 15 kHz;对于专用载波的 PMCH, 一个广播/多播 MBSFN 子帧内有 6 个 OFDM 符号,CP 的长度为 33.3 μs,子载 波间隔为 7.5 kHz,每个 OFDM 符号的长度(不含 CP)也加长到 0.133 ms。
LTE R14 对 PMCH 做了增强,引入了另一种 MBSFN 子帧结构,用于广播/ 多播的专用载波,以支持更广的覆盖和更大范围的 SFN 合并。具体地,子载波 间隔减小到 1.25 kHz,因此一个 PRB 有 144 个子载波,时域上有 2 个 OFDM 符号,循环前缀加长到 200 μs,R14 的增强还包括采用子帧#0 承载广播/多播的 系统消息和小区同步信号,使得 PMCH 彻底摆脱对单播系统的依赖,能够独立 完成同步和系统消息的接收,进一步降低系统消息和控制信道的开销。
从式(3.1)可以看出,由于传输时延的不同,而且是相干合并,叠加后 的信道的频率选择性更加显著,所以需要提高解调参考信号在频域上的密度, 如图 3-1 所示。
image.png
image.png
图 3-2 是频谱效率与站间距的关系曲线[1]。这里假设 MBSFN 的系统带宽是 10 MHz,速率的计算包括了各种开销,如加长的循环前缀(Extended CP)、 多播参考信号(MRS)、物理下行控制信道(PDCCH)等。可以发现当站间距 为 500 m 时,95%覆盖区域能得到 3.6 Mbit/(s·Hz)的多播频谱效率;当站间 距增加到 1732 m 时,95%覆盖区域的频谱效率只有 1 Mbit/(s·Hz)。总之, 在 eNB 发射功率保持不变的条件下,要想实现高速率的广覆盖,就得增加 eNB 的部署密度。
image.png
当然,增加基站的发射功率可以提高 MBSFN 的速率和覆盖,但这在许多 情况下是不大现实的,无论从设备的成本,能耗和规范干扰的角度,或是从运 营商的商业模式考虑。毕竟 MBSFN 是蜂窝通信的一类服务,与无线电视广播 类的服务还是有差异的。电视台架设的发射塔远比基站要高,发射功率比一般 的基站高一个数量级,所用的频段较低,穿透能力强,很容易用一两个站覆盖 整个城市,这与纯广播的业务是相适应的,而 MBSFN 并非一定采用完全相同的运营模式。

| 3.3 广播/多播业务的非正交传输 |

相关文章
|
18天前
|
机器人 5G vr&ar
探索未来:5G技术如何重塑我们的世界
当5G技术如潮水般涌入我们的生活,它不仅仅代表着更快的网络速度。本文将深入探讨5G技术如何影响社会的各个层面,从工业自动化到远程医疗,再到智能城市和虚拟现实的融合,揭示这一创新技术如何成为连接现实与未来、虚拟与现实的桥梁。通过具体实例和数据分析,我们会发现5G技术不仅仅是一个技术进步,更是一场深刻改变我们生活方式的革命。
|
14天前
|
自动驾驶 物联网 5G
探索未来:5G技术如何重塑我们的世界
随着5G技术的逐步普及,我们正站在一个新时代的门槛上。本文将深入探讨5G技术的核心原理,分析其对各行各业的影响,并预测它对未来社会的深远影响。我们将从5G的基本概念出发,通过实际案例展示其在不同领域的应用,并讨论这一变革性技术可能带来的挑战与机遇。
31 8
|
2月前
|
存储 自动驾驶 大数据
5G技术:连接未来的桥梁
【6月更文挑战第17天】**5G技术,连接未来的桥梁,以高速率(20Gbps)、低时延(1ms)和海量连接赋能工业自动化、远程医疗、无人驾驶及智能教育。5G推动产业升级,改善生活质量,促进全球化,开启全新应用场景,预示着一个更高效、智能和互联的未来。**
|
2月前
|
5G 安全 SDN
【计算巢】网络切片技术:5G 网络的核心创新
【6月更文挑战第2天】5G时代的变革核心技术——网络切片,如同万能钥匙,可根据不同应用场景定制专属网络服务。通过虚拟化逻辑网络,满足各类行业个性化需求,如自动驾驶的低延迟连接或远程手术的安全传输。实现网络切片涉及NFV和SDN等技术,虽面临动态管理、安全隔离等挑战,但其潜力巨大,将推动各行各业的数字化转型,成为社会进步的关键驱动力。
62 2
|
3月前
|
自动驾驶 物联网 5G
【计算巢】无线网络技术:从Wi-Fi到5G的演进
【5月更文挑战第31天】本文探讨了无线网络技术从Wi-Fi到5G的演进,Wi-Fi利用无线电波实现无线局域网连接,示例代码展示如何用Python扫描Wi-Fi网络。5G技术则引入大规模MIMO、波束成形和毫米波,提高速度和容量,支持物联网等应用。通过Python检测5G信号强度的代码帮助理解其工作原理。无线网络技术的不断演进,为生活和工作带来更高效率和更多可能性。
46 1
|
3月前
|
安全 物联网 5G
探索5G技术及其对物联网的深远影响
【5月更文挑战第29天】5G技术,作为新一代移动通信技术,以其高速率、低延迟和大连接密度特性,显著影响物联网发展。它提升物联网设备连接速度与稳定性,推动设备智能化,增强安全性,并促进物联网产业繁荣。5G将重塑生活和生产方式,助力智能制造、智能交通等领域的快速发展。
|
2月前
|
监控 自动驾驶 安全
5G技术的飞速发展与应用前景
随着科技的不断进步,5G技术作为下一代移动通信标准,正以惊人的速度发展和应用。本文将探讨5G技术的前沿发展、其在各个领域的广泛应用以及对未来社会的影响。
128 0
|
3月前
|
人工智能 自动驾驶 物联网
5G技术:重塑我们生活的未来
【5月更文挑战第11天】5G技术,引领未来生活变革,提升通信速度、降低延迟,助力自动驾驶、远程医疗、虚拟现实等领域。5G将使日常生活更便捷,产业升级,社会进步,尤其在家居智能化、工业生产、农业精准化及医疗效率上带来显著改善。随着5G与AI、物联网融合,未来将深入各领域,塑造全新生活体验,驱动社会全面发展。
|
3月前
|
安全 自动驾驶 5G
5G vs 4G:通信技术的下一个革命
【4月更文挑战第21天】
73 0
5G vs 4G:通信技术的下一个革命
|
3月前
|
边缘计算 运维 5G
【专栏】IT 技术百科:5G 承载网是连接5G无线接入网与核心网的关键基础设施,负责高效、可靠的数据传输。
【4月更文挑战第28天】5G 承载网是连接5G无线接入网与核心网的关键基础设施,负责高效、可靠的数据传输。它保障通信质量,支持多样业务,并驱动技术创新。关键技术包括FlexE、网络切片、光传输和智能管控。面对高速率、低时延需求及网络复杂性挑战,5G承载网需持续创新并优化规划。未来,它将趋向智能化、融合发展及绿色节能。作为5G性能的核心,5G承载网将伴随5G技术的普及,持续为数字生活创造更多可能性。
127 0