存储与计算分离:OSS构建表 + 计算引擎对接

简介: 看到标题,可能有用户要问:OSS不是用来存图片、视频、及文件的吗,还可以在上面建表、数仓?计算效率和经济性表现怎么样? 本文先给出基本结论: OSS是什么? 对象存储(Object Storage Service,简称OSS)是基于阿里云飞天分布式系统的海量、安全和高可靠的云存储服务,是一种面向互联网的大规模、通用存储,提供RESTful API,具备容量和处理的弹性扩展能力。

看到标题,可能有用户要问:OSS不是用来存图片、视频、及文件的吗,还可以在上面建表、数仓?计算效率和经济性表现怎么样?

本文先给出基本结论:

  • OSS是什么?

对象存储(Object Storage Service,简称OSS)是基于阿里云飞天分布式系统的海量、安全和高可靠的云存储服务,是一种面向互联网的大规模、通用存储,提供RESTful API,具备容量和处理的弹性扩展能力。

  • 基于OSS是否可以创建数据表?

既然可以把摄像头推流接到OSS,建表属于小Case了。并且2016年在亦龙大神的帮助下,Hadoop社区在官方版本中支持OSS,开启了阿里云存储与开源融合的新里程碑。

  • OSS上建表是否易用?

今天为了降低OSS上建表的门槛,日志服务(原SLS)LogHub可以支持OSS上表的实时写入(表类型包括TextFile,列存储Parquet),支持压缩及数据Partition配置。在计算引擎端,我们已经和阿里云(MaxCompute、E-MapReduce)和主流开源计算引擎(Presto等)打通,无缝使用多种计算引擎热插拔对接。

既然可以把数据表直接建在HDFS、MaxCompute(原ODPS)上,选择OSS来存储表数据又是为什么呢?

存储与计算分离的趋势

在2009年做大规模计算的核心词是“Locality”:让计算尽量靠近数据以提升效率。当时一个公认的模型是:构建一个足够大的资源池,把数据和计算融合在里面发挥规模效应。

但最近几年以来,生态和环境都悄然发生了一些变化:

  • 计算模式:全量数据计算模式,逐步被Impala、Presto等更高效计算模式赶上
  • 存储格式:ORC/Parquet/Kudu等列存、索引技术诞生,使得计算不需要Scan大块数据
  • 网络架构:25G网络开始上线,FPGA等技术也加快了网络体验
  • 存储介质:SSD、AliFlash、3D X-Point 大量混合技术使得存储可以“既快又猛”
  • 计算平台:GPU、FGPA、甚至是未来的TPU等改变计算形态

从这些变化使得我们发现:

通过一款机型通吃存储+计算方案,已经演变成存储+计算各自服务化,通过高速网络进行连接的趋势

1
这种方式可以使得存储、计算不用再被”机型“,”机柜“,”电力“等方案束缚,在各自最擅长的领域进行创新。从业界对于”分层“的工作中,我们也看到了这类的尝试:

案例1:Netflix 基于S3解决方案

Netflix是AWS创新代表,特别是他们的大数据业务。根据2016 Re:Invent上Slides描述,Netflix每天新增500 Billion条日志(数据量500 TB)、存量数仓规模 60PB、每天会对其中3PB数据做计算。

在Slides中Netflix谈到:从2014年开始就决定开始摒弃各种系统隔阂,底层使用了统一存储S3,之上构建各种计算引擎系统。事实证明Netflix这一步走得正确,海量的存储与计算能力使得商业的创新得到了充分释放,成为AWS上令人引以为傲的学习榜样。

2

受Netflix启发,AWS 在2016 Re:Invent 上推出了一款新的计算产品Athena:该产品将Presto服务化提供基于各种存储类服务的 Ad-Hoc Query能力。

AWS Athena利用多个可用区(Availability Zones)中的计算资源执行查询,并将S3用作底层数据存储系统,由于数据冗余地存储在多个地点和每个地点的多个设备中,服务具备很高的可用性和可靠性。

案例2:Facebook RocksDB项目

Google开源了Level DB,而Facebook通过改造成RocksDB使它上升到新高度。RocksDB除了对LSM模型的多个优化外,另一个非常吸引人的地方在对存储介质、计算层适配得非常友好,可以充分发挥计算和存储的性能。底层的介质与存储对上层API透明热插拔,是在软件设计层面存储+计算分离的一个优美案例。

3

OSS上建立数仓的优势

优势1:不受限制的存储空间

对于数据仓库来说最重要一点是海量存储,能为计算分析提供大数据吞吐支持。在这个点上OSS是非常合适的。

结合OSS的目录设置,对大规模(百万级别以上)文件做合理划分,并与计算引擎配合拿到更高的计算效率。LogHub投递OSS存储支持Hive-style分区目录,将数据按照日期存储,可以设置多维分区。

举个例子,我们有一个应用叫my-app,为应用创建一个dw项目 my-dw,在项目中创建了一组表,以其中一个表my-table作为例子:表中的数据以时间(天)作为partition(例如date='20170330' 代表当天的数据目录)。

整个数仓的层级结构可以映射为OSS的一个访问路径:

  • my-app 为 OSS 上bucket名称
  • my-dw 之后则为数仓的项目名(namespace)
  • my-table是表名
  • date=20170330是一维分区

4

优势2:极低的存储成本

OSS 是提供实时数据读写“最便宜”存储产品之一,对于100GB日志数据:

  1. 使用列存储编码(以Parquet格式为例),通过snappy压缩后,存储数据量在8 GB左右
  2. 以OSS当前官网价格计算,使用OSS存储一个月费用为 8 * 0.148 = 1.184 元
  3. 除此之外,OSS有两种根据访问频率可任意转换形态:IA(低频)、Archive(冷备),最低可以降低60%成本。OSS 与 IA,Archive之间数据模型是一致的,数据形态可以非常便捷的转换。

5

优势3:一份数据,对接多种计算引擎

我们可以将数据以一种通用的协议存储(例如textfile,sequence file或parquet等),目前OSS上数据支持如下计算引擎:

  • 开源:Spark、Presto、Druid,Pig,Hive等
  • 阿里云:MaxCompute,E-MapReduce、RDS-PG、Batch Compute等

以上计算引擎和存储之间都是热插拔,可以方便地在不同大小的测试、生产数据集上进行切换组合。

对比与传统数仓方案,数据存储于OSS,计算实现了Schema on Read,使得数据分析的自由度得到了很大提升。

6

除了支持多种计算引擎外,OSS 本身还有Geo-Replication功能,可以在不同Region间准实时进行同步,不把鸡蛋放在一个篮子里,以进一步提升重要数据的安全性。

优势4:在计算效率上比肩HDFS类存储

OSS从API上看起来不像HDFS类存储这么细,性能并不一定好?

这里以一个Map-Reduce作业举例,在作业的执行过程中,OSS会在3个地方被用到:

  • 调度:当查询提交时,需要根据计算数据范围 List OSS目录制定plan,确定多少文件目录参与计算
  • 运行:每个Worker根据plan扫描指定目录下文件,读取并进行自定义计算
  • 结果:当计算完成时,写入OSS(计算中间结果产生的Shuffle文件可以写在本机以优化性能,部分场景下也可以选择使用OSS)

7

可见,对于Ad-Hoc Query类场景,OSS在使用模式上都可以完全胜任。

开始在OSS分析数据

数据写入

  • LogHub(推荐)

直接将日志以准实时方式写入OSS,支持JSONParquetCSV格式,投递规则配置如下:

8

数据在OSS存储如下:

2017-04-18 11:50:39 513.75KB oss://oss-shipper-shenzhen-test/tfs_access_log/updatetime=2017_04_18_11_00/log_1492487434507106535_1670221.snappy.parquet
2017-04-18 11:56:01 517.36KB oss://oss-shipper-shenzhen-test/tfs_access_log/updatetime=2017_04_18_11_00/log_1492487754196771821_1670280.snappy.parquet
2017-04-18 12:01:31 537.03KB oss://oss-shipper-shenzhen-test/tfs_access_log/updatetime=2017_04_18_12_00/log_1492488089710991745_1670335.snappy.parquet
2017-04-18 12:06:54 512.95KB oss://oss-shipper-shenzhen-test/tfs_access_log/updatetime=2017_04_18_12_00/log_1492488410774368293_1670389.snappy.parquet
2017-04-18 12:22:55 512.95KB oss://oss-shipper-shenzhen-test/tfs_access_log/updatetime=2017_04_18_12_00/log_1492489370787863606_1670558.snappy.parquet
2017-04-18 12:34:21 261.69KB oss://oss-shipper-shenzhen-test/tfs_access_log/updatetime=2017_04_18_12_00/log_1492490057002827204_1670672.snappy.parquet
object list number is: 5451
totalsize is: real:195677878828, format:182.24GB

通过LogHub写入优势:数据接入LogHub多种选择,全托管归档服务,准实时投递,支持异常重试,STS授权。了解OSS投递请参考文档

  • OSS API/SDK

使用OSS 各种SDK或API写入,完全自主的写入方式,参考文档

计算引擎

相关实践学习
对象存储OSS快速上手——如何使用ossbrowser
本实验是对象存储OSS入门级实验。通过本实验,用户可学会如何用对象OSS的插件,进行简单的数据存、查、删等操作。
目录
相关文章
|
4月前
|
存储 人工智能 Cloud Native
阿里云渠道商:OSS与传统存储系统的差异在哪里?
本文对比传统存储与云原生对象存储OSS的架构差异,涵盖性能、成本、扩展性等方面。OSS凭借高持久性、弹性扩容及与云服务深度集成,成为大数据与AI时代的优选方案。
|
6月前
|
存储 运维 安全
阿里云国际站OSS与自建存储的区别
阿里云国际站对象存储OSS提供海量、安全、低成本的云存储解决方案。相比自建存储,OSS具备易用性强、稳定性高、安全性好、成本更低等优势,支持无限扩展、自动冗余、多层防护及丰富增值服务,助力企业高效管理数据。
|
9月前
|
存储 人工智能 Kubernetes
AI 场景深度优化!K8s 集群 OSSFS 2.0 存储卷全面升级,高效访问 OSS 数据
阿里云对象存储OSS是一款海量、安全、低成本、高可靠的云存储服务,是用户在云上存储的高性价比选择…
|
10月前
|
存储 Kubernetes 对象存储
StrmVol存储卷:如何解锁K8s对象存储海量小文件访问性能新高度?
如何提升海量文件的数据读取速率,对于AI训练集管理、量化回测、时序日志分析等场景尤为重要。阿里云容器服务(ACK))支持StrmVol类型存储卷,基于底层虚拟块设备及内核态文件系统,显著降低海量小文件访问延迟。
|
10月前
|
存储 Kubernetes 对象存储
StrmVol 存储卷:解锁 K8s 对象存储海量小文件访问性能新高度
本文介绍了阿里云容器服务(ACK)支持的StrmVol存储卷方案,旨在解决Kubernetes环境中海量小文件访问性能瓶颈问题。通过虚拟块设备与内核态文件系统(如EROFS)结合,StrmVol显著降低了小文件访问延迟,适用于AI训练集加载、时序日志分析等场景。其核心优化包括内存预取加速、减少I/O等待、内核态直接读取避免用户态切换开销,以及轻量索引快速初始化。示例中展示了基于Argo Workflows的工作流任务,模拟分布式图像数据集加载,测试结果显示平均处理时间为21秒。StrmVol适合只读场景且OSS端数据无需频繁更新的情况,详细使用方法可参考官方文档。
984 144
|
10月前
|
存储 弹性计算 数据管理
阿里云对象存储oss怎么收费?存储费用+流量收费标准
阿里云对象存储OSS收费标准包含存储费、流量费及请求费等,支持按量付费与包年包月两种模式。标准型本地冗余存储按量付费价格为0.09元/GB/月,包年包月500GB预留空间优惠价118元/年。流量费仅收取公网出方向费用,忙时0.50元/GB,闲时0.25元/GB。更多详情可参考官方页面。
1969 91
|
9月前
|
存储 人工智能 测试技术
AI 场景深度优化!K8s 集群 OSSFS 2.0 存储卷全面升级,高效访问 OSS 数据
OSSFS 2.0通过轻量化协议设计、协程化技术及FUSE3低级API重构,实现大文件顺序读写与小文件高并发加载的显著提升,在实际测试中表现出高达数十倍的吞吐量增长。适用于机器学习训练、推理等对高带宽低延迟要求严苛的场景,同时支持静态和动态挂载方式,方便用户在ACK集群中部署使用。
909 34
|
8月前
|
存储 关系型数据库 MySQL
成本直降30%!RDS MySQL存储自动分层实战:OSS冷热分离架构设计指南
在日均订单量超500万的场景下,MySQL数据年增200%,但访问集中在近7天(85%)。通过冷热数据分离,将历史数据迁移至OSS,实现存储成本下降48%,年省72万元。结合RDS、OSS与Redis构建分层架构,自动化管理数据生命周期,优化查询性能与资源利用率,支撑PB级数据扩展。
559 3
|
8月前
|
存储 缓存 API
从零构建企业知识库问答系统(基于通义灵码+RAG+阿里云OSS的落地实践)
本系统基于RAG技术,结合语义检索与大语言模型,解决企业知识管理中的信息孤岛、检索低效和知识流失问题。采用通义灵码、Milvus与阿里云OSS,实现知识查询效率提升、新员工培训周期缩短及专家咨询减少。支持多模态文档处理,具备高可用架构与成本优化方案,助力企业智能化升级。
998 3

相关产品

  • 对象存储