PostgreSQL 并行计算解说 之23 - parallel union all

本文涉及的产品
云原生数据库 PolarDB MySQL 版,通用型 2核4GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介: 标签 PostgreSQL , cpu 并行 , smp 并行 , 并行计算 , gpu 并行 , 并行过程支持 背景 PostgreSQL 11 优化器已经支持了非常多场合的并行。简单估计,已支持27余种场景的并行计算。 parallel seq scan

标签

PostgreSQL , cpu 并行 , smp 并行 , 并行计算 , gpu 并行 , 并行过程支持


背景

PostgreSQL 11 优化器已经支持了非常多场合的并行。简单估计,已支持27余种场景的并行计算。

parallel seq scan                                              
                                              
parallel index scan                                              
                                              
parallel index only scan                                              
                                              
parallel bitmap scan                                              
                                              
parallel filter                                              
                                          
parallel hash agg                                          
                                          
parallel group agg                                          
                                              
parallel cte                                              
                                              
parallel subquery                                              
                                              
parallel create table                                              
                                              
parallel create index                                              
                                              
parallel select into                                              
                                              
parallel CREATE MATERIALIZED VIEW                                              
                                              
parallel 排序 : gather merge                                               
                                              
parallel nestloop join                                              
                                              
parallel hash join                                              
                                              
parallel merge join                                              
                                              
parallel 自定义并行聚合                                              
                                              
parallel 自定义并行UDF                                              
                                              
parallel append             
    
parallel append merge         
                                              
parallel union all      
                                              
parallel fdw table scan                                              
                                              
parallel partition join                                              
                                              
parallel partition agg                                              
                                              
parallel gather                                      
                              
parallel gather merge                              
                                              
parallel rc 并行                                              
                                              
parallel rr 并行                                              
                                              
parallel GPU 并行                                              
                                              
parallel unlogged table            
          
lead parallel        

接下来进行一一介绍。

关键知识请先自行了解:

1、优化器自动并行度算法 CBO

《PostgreSQL 9.6 并行计算 优化器算法浅析》

《PostgreSQL 11 并行计算算法,参数,强制并行度设置》

parallel union all

多段并行执行,或者多段并行执行并排序

parallel union all 实际上用到是parallel append优化method。

如果多段执行的结果需要排序,那么优化器可以在每个段内返回有序结果,可以使用归并排序(类似merge sort, gather merge)(parallel append merge)。

《PostgreSQL 并行计算解说 之23 - parallel append merge》

数据量:10亿

场景 数据量 关闭并行 开启并行 并行度 开启并行性能提升倍数
parallel union all 10亿 99 秒 5.6 秒 24 17.68 倍
postgres=# show max_worker_processes ;        
 max_worker_processes         
----------------------        
 128        
(1 row)        
postgres=# set min_parallel_table_scan_size =0;        
postgres=# set min_parallel_index_scan_size =0;        
postgres=# set parallel_tuple_cost =0;        
postgres=# set parallel_setup_cost =0;        
postgres=# set max_parallel_workers=128;        
postgres=# set max_parallel_workers_per_gather =24;        
postgres=# set enable_parallel_hash =on;        
postgres=# set enable_parallel_append =on;        
postgres=# set enable_partitionwise_aggregate =off;        
postgres=# set work_mem ='128MB';        

1、关闭并行,耗时: 99 秒。

postgres=# set max_parallel_workers_per_gather =0;        
postgres=# set enable_parallel_append =off;        
        
explain select * from (  
select * from ccc0 union all   
select * from ccc1 union all   
select * from ccc2 union all   
select * from ccc3 union all   
select * from ccc4 union all   
select * from ccc5 union all   
select * from ccc6 union all   
select * from ccc7 union all   
select * from ccc8 union all   
select * from ccc9 union all   
select * from ccc10 union all   
select * from ccc11 union all   
select * from ccc12 union all   
select * from ccc13 union all   
select * from ccc14 union all   
select * from ccc15 union all   
select * from ccc16 union all   
select * from ccc17 union all   
select * from ccc18 union all   
select * from ccc19 union all   
select * from ccc20 union all   
select * from ccc21 union all   
select * from ccc22 union all   
select * from ccc23   
) as t   
order by order_id limit 10;  
  
                                     QUERY PLAN                                       
------------------------------------------------------------------------------------  
 Limit  (cost=42015064.65..42015064.67 rows=10 width=48)  
   ->  Sort  (cost=42015064.65..44515064.93 rows=1000000114 width=48)  
         Sort Key: ccc0.order_id  
         ->  Append  (cost=0.00..20405421.71 rows=1000000114 width=48)  
               ->  Seq Scan on ccc0  (cost=0.00..641839.96 rows=41663296 width=48)  
               ->  Seq Scan on ccc1  (cost=0.00..625842.88 rows=40624888 width=48)  
               ->  Seq Scan on ccc2  (cost=0.00..722107.36 rows=46873636 width=48)  
               ->  Seq Scan on ccc3  (cost=0.00..545575.32 rows=35414332 width=48)  
               ->  Seq Scan on ccc4  (cost=0.00..657705.92 rows=42693192 width=48)  
               ->  Seq Scan on ccc5  (cost=0.00..609836.16 rows=39585616 width=48)  
               ->  Seq Scan on ccc6  (cost=0.00..625934.32 rows=40630732 width=48)  
               ->  Seq Scan on ccc7  (cost=0.00..673876.80 rows=43742880 width=48)  
               ->  Seq Scan on ccc8  (cost=0.00..601729.04 rows=39059604 width=48)  
               ->  Seq Scan on ccc9  (cost=0.00..609919.96 rows=39591296 width=48)  
               ->  Seq Scan on ccc10  (cost=0.00..674124.76 rows=43758976 width=48)  
               ->  Seq Scan on ccc11  (cost=0.00..529544.24 rows=34373924 width=48)  
               ->  Seq Scan on ccc12  (cost=0.00..818443.04 rows=53127004 width=48)  
               ->  Seq Scan on ccc13  (cost=0.00..674104.80 rows=43757680 width=48)  
               ->  Seq Scan on ccc14  (cost=0.00..786195.28 rows=51033728 width=48)  
               ->  Seq Scan on ccc15  (cost=0.00..609709.04 rows=39577604 width=48)  
               ->  Seq Scan on ccc16  (cost=0.00..633745.96 rows=41137896 width=48)  
               ->  Seq Scan on ccc17  (cost=0.00..673951.76 rows=43747376 width=48)  
               ->  Seq Scan on ccc18  (cost=0.00..802394.72 rows=52085272 width=48)  
               ->  Seq Scan on ccc19  (cost=0.00..529621.20 rows=34378920 width=48)  
               ->  Seq Scan on ccc20  (cost=0.00..642042.32 rows=41676432 width=48)  
               ->  Seq Scan on ccc21  (cost=0.00..401251.50 rows=26046150 width=48)  
               ->  Seq Scan on ccc22  (cost=0.00..673891.04 rows=43743804 width=48)  
               ->  Seq Scan on ccc23  (cost=0.00..642033.76 rows=41675876 width=48)  
(28 rows)  
  
  
select * from (  
select * from ccc0 union all   
select * from ccc1 union all   
select * from ccc2 union all   
select * from ccc3 union all   
select * from ccc4 union all   
select * from ccc5 union all   
select * from ccc6 union all   
select * from ccc7 union all   
select * from ccc8 union all   
select * from ccc9 union all   
select * from ccc10 union all   
select * from ccc11 union all   
select * from ccc12 union all   
select * from ccc13 union all   
select * from ccc14 union all   
select * from ccc15 union all   
select * from ccc16 union all   
select * from ccc17 union all   
select * from ccc18 union all   
select * from ccc19 union all   
select * from ccc20 union all   
select * from ccc21 union all   
select * from ccc22 union all   
select * from ccc23   
) as t   
order by order_id limit 10;  
 order_id | cust_id | status   
----------+---------+--------  
        1 |     649 |   
        2 |     226 |   
        3 |     816 |   
        4 |     844 |   
        5 |     827 |   
        6 |     456 |   
        7 |     810 |   
        8 |     365 |   
        9 |      49 |   
       10 |      75 |   
(10 rows)  
  
Time: 98991.924 ms (01:38.992)  

2、开启并行,耗时: 5.6 秒。

postgres=# set max_parallel_workers_per_gather =24;        
postgres=# set enable_parallel_append =on;        
       
explain         
/*+   
Parallel(ccc0 24 hard)   
Parallel(ccc1 0 hard)   
Parallel(ccc2 0 hard)   
Parallel(ccc3 0 hard)   
Parallel(ccc4 0 hard)   
Parallel(ccc5 0 hard)   
Parallel(ccc6 0 hard)   
Parallel(ccc7 0 hard)   
Parallel(ccc8 0 hard)   
Parallel(ccc9 0 hard)   
Parallel(ccc10 0 hard)   
Parallel(ccc11 0 hard)   
Parallel(ccc12 0 hard)   
Parallel(ccc13 0 hard)   
Parallel(ccc14 0 hard)   
Parallel(ccc15 0 hard)   
Parallel(ccc16 0 hard)   
Parallel(ccc17 0 hard)   
Parallel(ccc18 0 hard)   
Parallel(ccc19 0 hard)   
Parallel(ccc20 0 hard)   
Parallel(ccc21 0 hard)   
Parallel(ccc22 0 hard)   
Parallel(ccc23 0 hard)   
*/   
select * from (  
select * from ccc0 union all   
select * from ccc1 union all   
select * from ccc2 union all   
select * from ccc3 union all   
select * from ccc4 union all   
select * from ccc5 union all   
select * from ccc6 union all   
select * from ccc7 union all   
select * from ccc8 union all   
select * from ccc9 union all   
select * from ccc10 union all   
select * from ccc11 union all   
select * from ccc12 union all   
select * from ccc13 union all   
select * from ccc14 union all   
select * from ccc15 union all   
select * from ccc16 union all   
select * from ccc17 union all   
select * from ccc18 union all   
select * from ccc19 union all   
select * from ccc20 union all   
select * from ccc21 union all   
select * from ccc22 union all   
select * from ccc23   
) as t   
order by order_id limit 10;  
  
DEBUG:  pg_hint_plan:  
used hint:  
Parallel(ccc0 24 hard)  
Parallel(ccc1 0 hard)  
Parallel(ccc10 0 hard)  
Parallel(ccc11 0 hard)  
Parallel(ccc12 0 hard)  
Parallel(ccc13 0 hard)  
Parallel(ccc14 0 hard)  
Parallel(ccc15 0 hard)  
Parallel(ccc16 0 hard)  
Parallel(ccc17 0 hard)  
Parallel(ccc18 0 hard)  
Parallel(ccc19 0 hard)  
Parallel(ccc2 0 hard)  
Parallel(ccc20 0 hard)  
Parallel(ccc21 0 hard)  
Parallel(ccc22 0 hard)  
Parallel(ccc23 0 hard)  
Parallel(ccc3 0 hard)  
Parallel(ccc4 0 hard)  
Parallel(ccc5 0 hard)  
Parallel(ccc6 0 hard)  
Parallel(ccc7 0 hard)  
Parallel(ccc8 0 hard)  
Parallel(ccc9 0 hard)  
not used hint:  
duplication hint:  
error hint:  
  
                                         QUERY PLAN                                           
--------------------------------------------------------------------------------------------  
 Limit  (cost=1927178.78..1927179.04 rows=10 width=48)  
   ->  Gather Merge  (cost=1927178.78..27750629.70 rows=1000000128 width=48)  
         Workers Planned: 24  
         ->  Sort  (cost=1927178.20..2031344.88 rows=41666672 width=48)  
               Sort Key: ccc12.order_id  
               ->  Parallel Append  (cost=0.00..1026776.40 rows=41666672 width=48)  
                     ->  Seq Scan on ccc12  (cost=0.00..818443.04 rows=53127004 width=48)  
                     ->  Seq Scan on ccc18  (cost=0.00..802394.72 rows=52085272 width=48)  
                     ->  Seq Scan on ccc14  (cost=0.00..786195.28 rows=51033728 width=48)  
                     ->  Seq Scan on ccc2  (cost=0.00..722107.36 rows=46873636 width=48)  
                     ->  Seq Scan on ccc10  (cost=0.00..674124.76 rows=43758976 width=48)  
                     ->  Seq Scan on ccc13  (cost=0.00..674104.80 rows=43757680 width=48)  
                     ->  Seq Scan on ccc17  (cost=0.00..673951.76 rows=43747376 width=48)  
                     ->  Seq Scan on ccc22  (cost=0.00..673891.04 rows=43743804 width=48)  
                     ->  Seq Scan on ccc7  (cost=0.00..673876.80 rows=43742880 width=48)  
                     ->  Seq Scan on ccc4  (cost=0.00..657705.92 rows=42693192 width=48)  
                     ->  Seq Scan on ccc20  (cost=0.00..642042.32 rows=41676432 width=48)  
                     ->  Seq Scan on ccc23  (cost=0.00..642033.76 rows=41675876 width=48)  
                     ->  Seq Scan on ccc16  (cost=0.00..633745.96 rows=41137896 width=48)  
                     ->  Seq Scan on ccc6  (cost=0.00..625934.32 rows=40630732 width=48)  
                     ->  Seq Scan on ccc1  (cost=0.00..625842.88 rows=40624888 width=48)  
                     ->  Seq Scan on ccc9  (cost=0.00..609919.96 rows=39591296 width=48)  
                     ->  Seq Scan on ccc5  (cost=0.00..609836.16 rows=39585616 width=48)  
                     ->  Seq Scan on ccc15  (cost=0.00..609709.04 rows=39577604 width=48)  
                     ->  Seq Scan on ccc8  (cost=0.00..601729.04 rows=39059604 width=48)  
                     ->  Seq Scan on ccc3  (cost=0.00..545575.32 rows=35414332 width=48)  
                     ->  Seq Scan on ccc19  (cost=0.00..529621.20 rows=34378920 width=48)  
                     ->  Seq Scan on ccc11  (cost=0.00..529544.24 rows=34373924 width=48)  
                     ->  Seq Scan on ccc21  (cost=0.00..401251.50 rows=26046150 width=48)  
                     ->  Parallel Seq Scan on ccc0  (cost=0.00..0.00 rows=1735971 width=48)  
(30 rows)  
  
postgres=# /*+   
Parallel(ccc0 24 hard)   
Parallel(ccc1 0 hard)   
Parallel(ccc2 0 hard)   
Parallel(ccc3 0 hard)   
Parallel(ccc4 0 hard)   
Parallel(ccc5 0 hard)   
Parallel(ccc6 0 hard)   
Parallel(ccc7 0 hard)   
Parallel(ccc8 0 hard)   
Parallel(ccc9 0 hard)   
Parallel(ccc10 0 hard)   
Parallel(ccc11 0 hard)   
Parallel(ccc12 0 hard)   
Parallel(ccc13 0 hard)   
Parallel(ccc14 0 hard)   
Parallel(ccc15 0 hard)   
Parallel(ccc16 0 hard)   
Parallel(ccc17 0 hard)   
Parallel(ccc18 0 hard)   
Parallel(ccc19 0 hard)   
Parallel(ccc20 0 hard)   
Parallel(ccc21 0 hard)   
Parallel(ccc22 0 hard)   
Parallel(ccc23 0 hard)   
*/   
select * from (  
select * from ccc0 union all   
select * from ccc1 union all   
select * from ccc2 union all   
select * from ccc3 union all   
select * from ccc4 union all   
select * from ccc5 union all   
select * from ccc6 union all   
select * from ccc7 union all   
select * from ccc8 union all   
select * from ccc9 union all   
select * from ccc10 union all   
select * from ccc11 union all   
select * from ccc12 union all   
select * from ccc13 union all   
select * from ccc14 union all   
select * from ccc15 union all   
select * from ccc16 union all   
select * from ccc17 union all   
select * from ccc18 union all   
select * from ccc19 union all   
select * from ccc20 union all   
select * from ccc21 union all   
select * from ccc22 union all   
select * from ccc23   
) as t   
order by order_id limit 10;  
DEBUG:  pg_hint_plan:  
used hint:  
Parallel(ccc0 24 hard)  
Parallel(ccc1 0 hard)  
Parallel(ccc10 0 hard)  
Parallel(ccc11 0 hard)  
Parallel(ccc12 0 hard)  
Parallel(ccc13 0 hard)  
Parallel(ccc14 0 hard)  
Parallel(ccc15 0 hard)  
Parallel(ccc16 0 hard)  
Parallel(ccc17 0 hard)  
Parallel(ccc18 0 hard)  
Parallel(ccc19 0 hard)  
Parallel(ccc2 0 hard)  
Parallel(ccc20 0 hard)  
Parallel(ccc21 0 hard)  
Parallel(ccc22 0 hard)  
Parallel(ccc23 0 hard)  
Parallel(ccc3 0 hard)  
Parallel(ccc4 0 hard)  
Parallel(ccc5 0 hard)  
Parallel(ccc6 0 hard)  
Parallel(ccc7 0 hard)  
Parallel(ccc8 0 hard)  
Parallel(ccc9 0 hard)  
not used hint:  
duplication hint:  
error hint:  
  
 order_id | cust_id | status   
----------+---------+--------  
        1 |     649 |   
        2 |     226 |   
        3 |     816 |   
        4 |     844 |   
        5 |     827 |   
        6 |     456 |   
        7 |     810 |   
        8 |     365 |   
        9 |      49 |   
       10 |      75 |   
(10 rows)  
  
Time: 5623.939 ms (00:05.624)  

union all的parallel append没有很好的并行度控制,如果要消除内部查询的并行度,将所有分段并行起来,分区表的话使用hint可以解决。而union all的情况下,外部 alias无法强制或影响parallel append的并行度。

所以使用的并行度这样来设置:

1、有且只有一个内部表设置并行度

2、并行度可以设置为UNION ALL子句数一致,不建议超过CPU核数的一半。

其他知识

1、优化器自动并行度算法 CBO

《PostgreSQL 9.6 并行计算 优化器算法浅析》

《PostgreSQL 11 并行计算算法,参数,强制并行度设置》

2、function, op 识别是否支持parallel

postgres=# select proparallel,proname from pg_proc;                                              
 proparallel |                   proname                                                                  
-------------+----------------------------------------------                                              
 s           | boolin                                              
 s           | boolout                                              
 s           | byteain                                              
 s           | byteaout                                              

3、subquery mapreduce unlogged table

对于一些情况,如果期望简化优化器对非常非常复杂的SQL并行优化的负担,可以自己将SQL拆成几段,中间结果使用unlogged table保存,类似mapreduce的思想。unlogged table同样支持parallel 计算。

4、vacuum,垃圾回收并行。

5、dblink 异步调用并行

《PostgreSQL VOPS 向量计算 + DBLINK异步并行 - 单实例 10亿 聚合计算跑进2秒》

《PostgreSQL 相似搜索分布式架构设计与实践 - dblink异步调用与多机并行(远程 游标+记录 UDF实例)》

《PostgreSQL dblink异步调用实现 并行hash分片JOIN - 含数据交、并、差 提速案例 - 含dblink VS pg 11 parallel hash join VS pg 11 智能分区JOIN》

暂时不允许并行的场景(将来PG会继续扩大支持范围):

1、修改行,锁行,除了create table as , select into, create mview这几个可以使用并行。

2、query 会被中断时,例如cursor , loop in PL/SQL ,因为涉及到中间处理,所以不建议开启并行。

3、paralle unsafe udf ,这种UDF不会并行

4、嵌套并行(udf (内部query并行)),外部调用这个UDF的SQL不会并行。(主要是防止large parallel workers )

5、SSI 隔离级别

参考

https://www.postgresql.org/docs/11/parallel-plans.html

《PostgreSQL 11 并行计算算法,参数,强制并行度设置》

《PostgreSQL 11 preview - 并行计算 增强 汇总》

《PostgreSQL 10 自定义并行计算聚合函数的原理与实践 - (含array_agg合并多个数组为单个一元数组的例子)》

《PostgreSQL 9.6 并行计算 优化器算法浅析》

 

免费领取阿里云RDS PostgreSQL实例、ECS虚拟机

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
SQL 移动开发 关系型数据库
PostgreSQL 执行计划,成本公式解说,代价因子校准,自动跟踪SQL执行计划(三)|学习笔记
快速学习PostgreSQL 执行计划,成本公式解说,代价因子校准,自动跟踪SQL执行计划(三)
PostgreSQL 执行计划,成本公式解说,代价因子校准,自动跟踪SQL执行计划(三)|学习笔记
|
SQL 存储 Oracle
PostgreSQL 分页, offset, 返回顺序, 扫描方法原理(seqscan, index scan, index only scan, bitmap scan, parallel xx scan),游标
PostgreSQL 分页, offset, 返回顺序, 扫描方法原理(seqscan, index scan, index only scan, bitmap scan, parallel xx scan),游标
3856 0
|
SQL 存储 弹性计算
PostgreSQL 分页, offset, 返回顺序, 扫描方法原理(seqscan, index scan, index only scan, bitmap scan, parallel xx scan),游标
标签 PostgreSQL , 数据离散性 , 扫描性能 , 重复扫 , bitmap index scan , 排序扫描 , 扫描方法 , 顺序 背景 一个这样的问题: 为什么select x from tbl offset x limit x; 两次查询连续的OFFSET,会有重复数据呢? select ctid,* from tbl where ... offset 0 li
2122 0
|
SQL 分布式计算 并行计算
PostgreSQL 并行计算解说 之13 - parallel OLAP : 中间结果 parallel with unlogged table
标签 PostgreSQL , cpu 并行 , smp 并行 , 并行计算 , gpu 并行 , 并行过程支持 背景 PostgreSQL 11 优化器已经支持了非常多场合的并行。简单估计,已支持27余种场景的并行计算。 parallel seq scan parallel
647 0
|
SQL 分布式计算 并行计算
PostgreSQL 并行计算解说 之14 - parallel index scan
标签 PostgreSQL , cpu 并行 , smp 并行 , 并行计算 , gpu 并行 , 并行过程支持 背景 PostgreSQL 11 优化器已经支持了非常多场合的并行。简单估计,已支持27余种场景的并行计算。 parallel seq scan paral
1194 0
|
SQL 分布式计算 并行计算
PostgreSQL 并行计算解说 之15 - parallel bitmap scan
标签 PostgreSQL , cpu 并行 , smp 并行 , 并行计算 , gpu 并行 , 并行过程支持 背景 PostgreSQL 11 优化器已经支持了非常多场合的并行。简单估计,已支持27余种场景的并行计算。 parallel seq scan
1275 0
|
7天前
|
关系型数据库 MySQL 数据库
Python处理数据库:MySQL与SQLite详解 | python小知识
本文详细介绍了如何使用Python操作MySQL和SQLite数据库,包括安装必要的库、连接数据库、执行增删改查等基本操作,适合初学者快速上手。
62 15
|
7天前
|
关系型数据库 MySQL 数据库
数据库数据恢复—MYSQL数据库文件损坏的数据恢复案例
mysql数据库文件ibdata1、MYI、MYD损坏。 故障表现:1、数据库无法进行查询等操作;2、使用mysqlcheck和myisamchk无法修复数据库。
|
11天前
|
SQL 关系型数据库 MySQL
MySQL导入.sql文件后数据库乱码问题
本文分析了导入.sql文件后数据库备注出现乱码的原因,包括字符集不匹配、备注内容编码问题及MySQL版本或配置问题,并提供了详细的解决步骤,如检查和统一字符集设置、修改客户端连接方式、检查MySQL配置等,确保导入过程顺利。
|
19天前
|
关系型数据库 MySQL 数据库
GBase 数据库如何像MYSQL一样存放多行数据
GBase 数据库如何像MYSQL一样存放多行数据