数据库必知词汇:流计算

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 在传统的数据处理流程中,总是先收集数据,然后将数据放到数据库中。当人们需要的时候通过数据库对数据做查询,得到答案或进行相关的处理。这样看起来虽然非常合理,但是结果却非常的紧凑,尤其是在一些实时搜索应用环境中的某些具体问题,类似于MapReduce方式的离线处理并不能很好地解决问题。这就引出了一种新的数据计算结构---流计算方式。它可以很好地对大规模流动数据在不断变化的运动过程中实时地进行分析,捕捉到可能有用的信息,并把结果发送到下一计算节点。

在传统的数据处理流程中,总是先收集数据,然后将数据放到数据库中。当人们需要的时候通过数据库对数据做查询,得到答案或进行相关的处理。这样看起来虽然非常合理,但是结果却非常的紧凑,尤其是在一些实时搜索应用环境中的某些具体问题,类似于MapReduce方式的离线处理并不能很好地解决问题。这就引出了一种新的数据计算结构---流计算方式。它可以很好地对大规模流动数据在不断变化的运动过程中实时地进行分析,捕捉到可能有用的信息,并把结果发送到下一计算节点。

不同于批量计算模型,流式计算更加强调计算数据流和低时延,流式计算数据处理模型如下:

  1. 使用实时数据集成工具,将数据实时变化传输到流式数据存储(即消息队列,如DataHub);此时数据的传输变成实时化,将长时间累积大量的数据平摊到每个时间点不停地小批量实时传输,因此数据集成的时延得以保证。此时数据将源源不断写入流数据存储,不需要预先加载的过程。同时流计算对于流式数据不提供存储服务,数据是持续流动,在计算完成后就立刻丢弃。
  2. 数据计算环节在流式和批量处理模型差距更大,由于数据集成从累积变为实时,不同于批量计算等待数据集成全部就绪后才启动计算作业,流式计算作业是一种常驻计算服务,一旦启动将一直处于等待事件触发的状态,一旦有小批量数据进入流式数据存储,流计算立刻计算并迅速得到结果。同时,阿里云流计算还使用了增量计算模型,将大批量数据分批进行增量计算,进一步减少单次运算规模并有效降低整体运算时延。从用户角度,对于流式作业,必须预先定义计算逻辑,并提交到流式计算系统中。在整个运行期间,流计算作业逻辑不可更改!用户通过停止当前作业运行后再次提交作业,此时之前已经计算完成的数据是无法重新再次计算。
  3. 不同于批量计算结果数据需等待数据计算结果完成后,批量将数据传输到在线系统;流式计算作业在每次小批量数据计算后可以立刻将数据写入在线/批量系统,无需等待整体数据的计算结果,可以立刻将数据结果投递到在线系统,进一步做到实时计算结果的实时化展现。

流计算是一种持续、低时延、事件触发的计算作业,用户使用流计算的顺序是:

  • 提交流计算作业。
  • 等待流式数据触发流计算作业。
  • 计算结果持续不断对外写出。

流式处理可以用于两种不同场景: 事件流和持续计算。
1、事件流:事件流具能够持续产生大量的数据,这类数据最早出现与传统的银行和股票交易领域,也在互联网监控、无线通信网等领域出现、需要以近实时的方式对更新数据流进行复杂分析如趋势分析、预测、监控等。简单来说,事件流采用的是查询保持静态,语句是固定的,数据不断变化的方式。

2、持续计算:比如对于大型网站的流式数据:网站的访问PV/UV、用户访问了什么内容、搜索了什么内容等,实时的数据计算和分析可以动态实时地刷新用户访问数据,展示网站实时流量的变化情况,分析每天各小时的流量和用户分布情况;比如金融行业,毫秒级延迟的需求至关重要。一些需要实时处理数据的场景也可以应用Storm,比如根据用户行为产生的日志文件进行实时分析,对用户进行商品的实时推荐等。

流式计算的价值在于业务方可在更短的时间内挖掘业务数据中的价值,并将这种低延迟转化为竞争优势。比方说,在使用流式计算的推荐引擎中,用户的行为偏好可以在更短的时间内反映在推荐模型中,推荐模型能够以更低的延迟捕捉用户的行为偏好以提供更精准、及时的推荐。流式计算能做到这一点的原因在于,传统的批量计算需要进行数据积累,在积累到一定量的数据后再进行批量处理;而流式计算能做到数据随到随处理,有效降低了处理延时。

资料来源:
实时计算与批量计算相比存在哪些差异? https://help.aliyun.com/knowledge_detail/62440.html
流式计算的应用特征 https://zhuanlan.zhihu.com/p/82171672
什么是流式计算? https://zhuanlan.zhihu.com/p/81849938

相关文章
|
存储 安全 数据库
数据库必知词汇:分级存储
分级存储是将数据采取不同的存储方式分别存储在不同性能的存储设备上,减少非重要性数据在一级本地磁盘所占用的空间,还可加快整个系统的存储性能。
1085 0
|
存储 JSON NoSQL
数据库必知词汇:Cassandra
Apache Cassandra是一套开源分布式NoSQL数据库系统。它最初由Facebook开发,用于储存收件箱等简单格式数据,集Google BigTable的数据模型与Amazon Dynamo的完全分布式的架构于一身Facebook于2008将 Cassandra 开源,此后,由于Cassandra良好的可扩展性,被Digg、Twitter等知名Web 2.0网站所采纳,成为了一种流行的分布式结构化数据存储方案,线性可扩展性和在商用硬件或云基础架构上经过验证的容错能力使它成为关键任务数据的理想平台。
1021 0
|
分布式计算 负载均衡 算法
数据库必知词汇:Zookeeper
ZooKeeper是用于维护配置信息、命名、提供分布式同步以及提供组服务的集中式服务。ZooKeeper是Google的Chubby一个开源的实现,是Hadoop和HBase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。ZooKeeper的目标就是封装好复杂易出错的关键服务,构成一个高效可靠的原语集,将简单易用的接口和性能高效、功能稳定的系统提供给用户。
388 0
|
SQL 存储 分布式计算
数据库必知词汇:Hive
Hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。Apache Hive数据仓库软件有助于使用SQL读取,写入和管理驻留在分布式存储中的大型数据集。 可以将结构投影到已经存储的数据上。 提供了命令行工具和JDBC驱动程序以将用户连接到Hive。
888 0
|
SQL 分布式计算 数据挖掘
数据库必知词汇:Pig
Apache Pig 是一个高级过程语言,特点是其结构易于大量并行化,适合于使用 Hadoop 和 MapReduce 平台来查询大型半结构化数据集。通过允许对分布式数据集进行类似 SQL 的查询,Pig 可以简化 Hadoop 的使用。
634 0
|
机器学习/深度学习 存储 分布式计算
数据库必知词汇:Mahout
Mahout 是 Apache基金会旗下的一个开源项目,其提供一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序。Mahout包含许多实现,包括聚类、分类、推荐过滤、频繁子项挖掘。此外,通过使用 Apache Hadoop 库,Mahout 可以有效地扩展到云中。
428 0
|
SQL 分布式计算 Oracle
数据库必知词汇:Sqoop
Apache Sqoop是一个用于在Apache Hadoop和关系数据库等结构化数据存储之间高效传输大容量数据的开源工具。主要用于在Hadoop(Hive)与传统的数据库间进行数据的传递,可以将一个关系型数据库(例如 :MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。此外,对于某些NoSQL数据库Sqoop也提供了连接器。
494 0
|
Apache 数据库
数据库必知词汇:Flume
Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。Flume具有简单灵活的基于流数据流的体系结构。它具有鲁棒性和容错性,具有可调的可靠性机制和许多故障转移和恢复机制。Flume使用一个简单的可扩展数据模型,允许在线分析应用程序。Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。
468 0
|
存储 缓存 API
数据库必知词汇:Memcached
Memcached是一个自由开源的,高性能,分布式内存对象缓存系统。Memcached是以LiveJournal旗下Danga Interactive公司的Brad Fitzpatric为首开发的一款软件。现在已成为mixi、hatena、Facebook、Vox、LiveJournal等众多服务中提高Web应用扩展性的重要因素。
364 0
|
存储 分布式计算 搜索推荐
数据库必知词汇:HDFS
Hadoop分布式文件系统(Hadoop Distributed File System, HDFS)是指被设计成适合运行在通用硬件上的分布式文件系统。它和现有的分布式文件系统有很多共同点。但同时,它和其他的分布式文件系统的区别也是很明显的。
437 0