谈谈我的数据仓库经历

简介:

目前还是大数据的时代,传统的数据仓库早就跟不上大数据的发展。还记得初入数据仓库这行时,那时候的用的还是oracle+obiee。数据量大到上千万的时候,前端完全加载不出来。而且那时候的数仓设计,由于数据仓库用的oracle,费用比较贵,所以尽量的用时间换空间,前端会存在很多维表和事实表的关联,甚至有些计算都会放到前端计算。这样就导致用户体验非常差。后面hadoop起来了,分布式的数据仓库很好的顺应了大数据的时代要求,用空间换时间和用户体验,所以基本上计算逻辑都由后台计算了,前端只是表对表的加载而已。所以,目前市面上的各种维度建模都大同小异,无非都是ODS保留贴源数据,DW层会划分为两个细分层级,一个是明细,用来清洗数据,一个是汇总数据,用来过滤口径等,最后还有一个DM层(有些厂可能不这么叫),这一层主要是面向应用,包括可视化,大屏,移动端等等。不知道你们所在的公司,数据仓库,在数仓模型这块有什么不同呢?欢迎留言讨论!!!

相关文章
|
15天前
|
存储 关系型数据库 分布式数据库
PostgreSQL 18 发布,快来 PolarDB 尝鲜!
PostgreSQL 18 发布,PolarDB for PostgreSQL 全面兼容。新版本支持异步I/O、UUIDv7、虚拟生成列、逻辑复制增强及OAuth认证,显著提升性能与安全。PolarDB-PG 18 支持存算分离架构,融合海量弹性存储与极致计算性能,搭配丰富插件生态,为企业提供高效、稳定、灵活的云数据库解决方案,助力企业数字化转型如虎添翼!
|
10天前
|
缓存 并行计算 PyTorch
144_推理时延优化:Profiling与瓶颈分析 - 使用PyTorch Profiler诊断推理延迟,优化矩阵运算的独特瓶颈
在2025年的大模型时代,推理时延优化已经成为部署LLM服务的关键挑战之一。随着模型规模的不断扩大(从数亿参数到数千亿甚至万亿参数),即使在最先进的硬件上,推理延迟也常常成为用户体验和系统吞吐量的主要瓶颈。
348 147
|
10天前
|
机器学习/深度学习 存储 缓存
92_自我反思提示:输出迭代优化
在大型语言模型(LLM)应用日益普及的今天,如何持续提升模型输出质量成为了业界关注的核心问题。传统的提示工程方法往往依赖一次性输入输出,难以应对复杂任务中的多轮优化需求。2025年,自我反思提示技术(Self-Reflection Prompting)作为提示工程的前沿方向,正在改变我们与LLM交互的方式。这项技术通过模拟人类的自我反思认知过程,让模型能够对自身输出进行评估、反馈和优化,从而实现输出质量的持续提升。
398 136
|
4天前
|
人工智能 移动开发 自然语言处理
阿里云百炼产品月刊【2025年9月】
本月通义千问模型大升级,新增多模态、语音、视频生成等高性能模型,支持图文理解、端到端视频生成。官网改版上线全新体验中心,推出高代码应用与智能体多模态知识融合,RAG能力增强,助力企业高效部署AI应用。
250 1
|
13天前
|
存储 人工智能 搜索推荐
终身学习型智能体
当前人工智能前沿研究的一个重要方向:构建能够自主学习、调用工具、积累经验的小型智能体(Agent)。 我们可以称这种系统为“终身学习型智能体”或“自适应认知代理”。它的设计理念就是: 不靠庞大的内置知识取胜,而是依靠高效的推理能力 + 动态获取知识的能力 + 经验积累机制。
401 135
|
13天前
|
存储 人工智能 Java
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话
本文讲解 Prompt 基本概念与 10 个优化技巧,结合学术分析 AI 应用的需求分析、设计方案,介绍 Spring AI 中 ChatClient 及 Advisors 的使用。
528 133
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话
|
14天前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
541 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)