达摩院医疗AI在26家医院上岗,已诊断3万个疑似肺炎病例

简介: 达摩院医疗AI已在湖北、上海、广东、江苏等16个省市的26家医院上岗,截至目前,达摩院AI已对3万个临床疑似新冠肺炎病例CT影像进行了诊断,单个病例影像分析可在20秒内完成,准确率达到96%。据介绍,该技术将很快在全国100多家新冠肺炎定点医院完成部署应用。

2月21日,记者获悉,达摩院医疗AI已在湖北、上海、广东、江苏等16个省市的26家医院上岗,截至目前,达摩院AI已对3万个临床疑似新冠肺炎病例CT影像进行了诊断,单个病例影像分析可在20秒内完成,准确率达到96%。据介绍,该技术将很快在全国100多家新冠肺炎定点医院完成部署应用。

疫情早期,由于确诊案例样本量少,医疗机构缺少高质量临床诊断数据,核酸检测作为病原学证据被公认为新冠肺炎诊断的主要参考标准。随着临床诊断数据的积累,新冠肺炎的影像学大数据特征逐渐清晰,CT影像结果变得愈发重要。根据国家卫健委公布的诊疗方案第五版,CT影像临床诊断结果可作为新冠肺炎病例判断的标准之一。

但在临床诊断过程中,医生人肉辨别CT影像效率较低,据了解,一位新冠肺炎病人的CT影像大概在300张左右,每诊断一个病例,影像医生的耗时大约为5-15分钟。

image.jpeg

为了提升新冠肺炎的临床诊断效率,达摩院基于5000多个病例的CT影像样本数据,学习训练样本的病灶纹理,研发了全新的AI算法模型,可在20秒内快速完成新冠肺炎影像的分析,分析结果准确率达96%,大幅提升诊断效率。AI还能并直接算出病灶部位的占比比例,进而量化病症的轻重程度。

据报道,该技术2月15日率先在郑州小汤山——郑州岐伯山医院投入使用,目前已在湖北、上海、广东、江苏、安徽等16个省市的26家医院落地,包括武汉市第六医院、上海市大华医院及江苏无锡虹桥医院,已有3万个临床疑似新冠肺炎病例通过达摩院医疗AI完成CT影像的诊断。

达摩院算法专家徐敏丰表示,“AI已经成为临床医生提升诊断效率的重要手段,尤其在细微区别的CT影像分析上远远高于医生肉眼的效率,可以预见未来AI还将在更多的疾病诊断中会发挥价值。”

据悉,达摩院正与合作伙伴卫宁健康加快技术推广。该技术将很快在全国100多家新冠肺炎定点医院完成部署应用。

相关文章
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
Baichuan-M1-14B:AI 助力医疗推理,为患者提供专业的建议!百川智能开源业内首个医疗增强大模型,普及医学的新渠道!
Baichuan-M1-14B 是百川智能推出的首个开源医疗增强大模型,专为医疗场景优化,支持多语言、快速推理,具备强大的医疗推理能力和通用能力。
169 16
Baichuan-M1-14B:AI 助力医疗推理,为患者提供专业的建议!百川智能开源业内首个医疗增强大模型,普及医学的新渠道!
|
4天前
|
人工智能
科技赋能妇产医疗,钉钉联合打造小红 AI 患者助理
复旦大学附属妇产科医院与钉钉共同打造的 AI 助理“小红”上线。“小红”孵化于钉钉智能化底座,通过学习复旦大学附属妇产科医院的 400 多篇科普知识,涵盖妇科疾病宣教、专业产科指导、女性健康保健等问题,能够为患者提供妇科疾病、产科指导、女性健康保健等知识的专业解答。
50 10
|
29天前
|
人工智能 达摩院 计算机视觉
SHMT:体验 AI 虚拟化妆!阿里巴巴达摩院推出自监督化妆转移技术
SHMT 是阿里达摩院与武汉理工等机构联合研发的自监督化妆转移技术,支持高效妆容迁移与动态对齐,适用于图像处理、虚拟试妆等多个领域。
71 9
SHMT:体验 AI 虚拟化妆!阿里巴巴达摩院推出自监督化妆转移技术
|
1月前
|
人工智能 API
MMedAgent:专为医疗领域设计的多模态 AI 智能体,支持医学影像处理、报告生成等多种医疗任务
MMedAgent 是专为医疗领域设计的多模态AI智能体,支持多种医疗任务,包括医学影像处理、报告生成等,性能优于现有开源方法。
149 19
MMedAgent:专为医疗领域设计的多模态 AI 智能体,支持医学影像处理、报告生成等多种医疗任务
|
28天前
|
人工智能 监控 安全
设计:智能医疗设备管理系统——AI医疗守护者
该系统将结合人工智能技术与区块链技术,实现对医疗设备的智能化管理。目标是提高医疗设备的管理效率,确保医疗设备的数据安全,优化医疗资源的配置,提升医疗服务质量。
|
30天前
|
存储 机器学习/深度学习 人工智能
昇腾AI行业案例(六):基于 PraNet 的医疗影像分割
欢迎学习《基于 PraNet 的医疗影像分割》实验。在本实验中,你将深入了解如何运用计算机视觉(CV)领域的 AI 模型,搭建一个高效精准的医疗影像分割系统,专注于息肉分割任务,并利用开源数据集对模型效果加以验证。
33 1
|
2月前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状与面临的挑战,旨在为读者提供一个全面的视角,了解AI如何改变传统医疗模式,以及这一变革过程中所伴随的技术、伦理和法律问题。通过分析AI技术的优势和局限性,本文旨在促进对AI在医疗领域应用的更深层次理解和讨论。
172 31
|
29天前
|
人工智能 算法 前端开发
OmAgent:轻松构建在终端设备上运行的 AI 应用,赋能手机、穿戴设备、摄像头等多种设备
OmAgent 是 Om AI 与浙江大学联合开源的多模态语言代理框架,支持多设备连接、高效模型集成,助力开发者快速构建复杂的多模态代理应用。
190 72
OmAgent:轻松构建在终端设备上运行的 AI 应用,赋能手机、穿戴设备、摄像头等多种设备
|
15天前
|
人工智能 自然语言处理 搜索推荐
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人
90 24
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人