招聘:搜索推荐事业部-机器学习大数据工程专家-杭州

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 等你……

团队介绍:

阿里巴巴拥有世界上规模最大的电商搜索、推荐场景,其中在线引擎系统支撑着每天数百亿计的海量搜索、推荐请求,而离线数据处理系统则承担着海量数据收集、处理并导出到在线系统的重要职责。随着阿里巴巴业务的高速发展,如何在数据量/业务量不断增长的情况下,满足海量吞吐与高实时性两个性能目标,并在此基础上稳定高效的支持大量业务需求,越来越成为巨大的挑战。为了应对这些挑战,我们基于Hadoop,Flink,Hbase等大数据组件,做整个机器学习的样本、特征处理平台,支持了阿里集团几乎所有电商业务的搜索及推荐系统,包括:淘宝、天猫以及AE、lazada等的搜索推荐业务,每天处理数以百亿计数据。

岗位描述:

1.参与搜索推荐机器学习大数据平台的开发,解决实时和离线计算流程中性能、功能等多方面的挑战,支持搜索推荐场景下机器学习的特征处理流程、引擎数据导入流程的开发和设计。
2.与Flink/Hadoop等生态深度结合,挖掘Flink计算引擎的潜力,开发相关的组件,推进流批计算的一体化。
3.存储方面针对搜索离线的应用场景,基于新型OLAP/TP混合存储系统,开发面向搜索场景的存储层抽象。

岗位要求:

  1. 具备扎实的计算机理论基础, 在数据结构及算法方面有较强的功底。
    2.精通Java编程,具备优秀的系统Debug/Profiling能力和经验,熟悉常见的面向对象设计模式,具备优秀的系统架构设计能力。
  2. 熟悉Hadoop/HBase/Flink/Spark等开源大数据技术,有大数据工程开发经验,有开源社区开发经验优先。
  3. 熟悉SQL语言编程,有数据库相关开发经验,了解数据库的基本原理。
  4. 熟悉机器学习特征处理、模型训练流程,了解常用机器学习算法,有大型搜索/推荐/广告算法架构设计经验者优先。

岗位提交地址:点我提交

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
1天前
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
35 15
|
4月前
|
机器学习/深度学习 自然语言处理 算法
【数据挖掘】金山办公2020校招大数据和机器学习算法笔试题
金山办公2020校招大数据和机器学习算法笔试题的解析,涵盖了编程、数据结构、正则表达式、机器学习等多个领域的题目和答案。
111 10
|
27天前
|
机器学习/深度学习 分布式计算 算法
【大数据分析&机器学习】分布式机器学习
本文主要介绍分布式机器学习基础知识,并介绍主流的分布式机器学习框架,结合实例介绍一些机器学习算法。
176 5
|
2月前
|
机器学习/深度学习 自然语言处理 算法
大数据与机器学习
大数据与机器学习紧密相关,前者指代海量、多样化且增长迅速的数据集,后者则是使计算机通过数据自动学习并优化的技术。大数据涵盖结构化、半结构化及非结构化的信息,其应用广泛,包括商业智能、金融和医疗保健等领域;而机器学习分为监督学习、无监督学习及强化学习,被应用于图像识别、自然语言处理和推荐系统等方面。二者相结合,能有效提升数据分析的准确性和效率,在智能交通、医疗及金融科技等多个领域创造巨大价值。
132 2
|
4月前
|
机器学习/深度学习 人工智能 Android开发
揭秘AI编程:从零开始构建你的第一个机器学习模型移动应用开发之旅:从新手到专家
【8月更文挑战第29天】本文将带你走进人工智能的奇妙世界,一起探索如何从零开始构建一个机器学习模型。我们将一步步解析整个过程,包括数据收集、预处理、模型选择、训练和测试等步骤,让你对AI编程有一个全面而深入的理解。无论你是AI初学者,还是有一定基础的开发者,都能在这篇文章中找到你需要的信息和启示。让我们一起开启这段激动人心的AI编程之旅吧! 【8月更文挑战第29天】在这篇文章中,我们将探索移动应用开发的奇妙世界。无论你是刚刚踏入这个领域的新手,还是已经有一定经验的开发者,这篇文章都将为你提供有价值的信息和指导。我们将从基础开始,逐步深入到更复杂的主题,包括移动操作系统的选择、开发工具的使用、
|
4月前
|
机器学习/深度学习 分布式计算 并行计算
性能优化视角:Python与R在大数据与高性能机器学习中的选择
【8月更文第6天】随着数据量的激增,传统的单机计算已经难以满足处理大规模数据集的需求。Python和R作为流行的数据科学语言,各自拥有独特的特性和生态系统来应对大数据和高性能计算的挑战。本文将从性能优化的角度出发,探讨这两种语言在处理大数据集和高性能计算时的不同表现,并提供具体的代码示例。
116 3
|
4月前
|
存储 分布式计算 大数据
惊了!大数据时代来袭,传统数据处理OUT了?创新应用让你眼界大开,看完这篇秒变专家!
【8月更文挑战第6天】在数据爆炸的时代,高效利用大数据成为关键挑战与机遇。传统数据处理手段难以胜任现今海量数据的需求。新兴的大数据技术,如HDFS、NoSQL及MapReduce、Spark等框架,为大规模数据存储与处理提供了高效解决方案。例如,Spark能通过分布式计算极大提升处理速度。这些技术不仅革新了数据处理方式,还在金融、电商等领域催生了风险识别、市场预测及个性化推荐等创新应用。
109 1
|
4月前
|
机器学习/深度学习 分布式计算 算法
MaxCompute 的 MapReduce 与机器学习
【8月更文第31天】随着大数据时代的到来,如何有效地处理和分析海量数据成为了一个重要的课题。MapReduce 是一种编程模型,用于处理和生成大型数据集,其核心思想是将计算任务分解为可以并行处理的小任务。阿里云的 MaxCompute 是一个面向离线数据仓库的计算服务,提供了 MapReduce 接口来处理大规模数据集。本文将探讨如何利用 MaxCompute 的 MapReduce 功能来执行复杂的计算任务,特别是应用于机器学习场景。
106 0
|
5月前
|
机器学习/深度学习 数据采集 大数据
驾驭大数据洪流:Pandas与NumPy在高效数据处理与机器学习中的核心作用
【7月更文挑战第13天】在大数据时代,Pandas与NumPy是Python数据分析的核心,用于处理复杂数据集。在一个电商销售数据案例中,首先使用Pandas的`read_csv`加载CSV数据,通过`head`和`describe`进行初步探索。接着,数据清洗涉及填充缺失值和删除异常数据。然后,利用`groupby`和`aggregate`分析销售趋势,并用Matplotlib可视化结果。在机器学习预处理阶段,借助NumPy进行数组操作,如特征缩放。Pandas的数据操作便捷性与NumPy的数值计算效率,共同助力高效的数据分析和建模。
104 3
|
6月前
|
机器学习/深度学习 人工智能 算法
【机器学习】机器学习与AI大数据的融合:开启智能新时代
【机器学习】机器学习与AI大数据的融合:开启智能新时代
236 1
下一篇
DataWorks