Tablestore入门手册-条件更新

本文涉及的产品
表格存储 Tablestore,50G 2个月
简介:








功能说明


条件更新功能只有在满足条件时才对表中的数据进行更改,当不满足条件时更新失败。


比如有如下场景,初始化数据,当数据字段A为-1时,将A的值更新为指定的内容。比如更新为12;如果不是-1则更新失败。



条件更新支持两个维度。分别是行的存在性检查和列值的条件判断。


第一个维度是行的条件检查,包括如下三种条件:



  • IGNORE:忽略,不做存在性检查;比如我们PutRow一行数据,PK为ABC,设置IGNORE之后,不管表中是否已经存在了ABC这一行数据,PutRow都可以写入成功。写入成功之后新写入的行将覆盖老的行。
  • EXPECT_EXIST:期望行存在;示例如上,同样是写入一行数据ABC,此次写入是期望表中已经存在ABC这一行数据,如果存在,写入成功,新的行覆盖老的行;如果不存在,此次写入也将失败。
  • EXPECT_NOT_EXIST:期望行不存在;也是写入一行数据ABC,此时希望表中不存在ABC这一行;如果表中存在这一行数据,写入失败;如果这行数据不存在,那么写入ABC。


第二个维度是列条件更新检查,目前支持单条件(SingleColumnValueCondition)和多条件(CompositeColumnValueCondition) 列值判断;列条件判断还支持算术运算(=、!=、>、>=、<、<=)和逻辑运算(NOT、AND、OR)。



比如,我们要更新人员信息,更新国家为中国的数据,伪代码如下


SQL样例: where 国家='中国'





# 伪代码
SingleColumnValueCondition(国家=中国)

# 因为只有一个条件,所以使用SingleColumnValueCondition
# 列名为“中国”,算数运算符为‘=’,只为‘中国’





在限定必须小于20岁,变成了多条件检查,


SQL样例: where 国家='中国' and age<20






# 伪代码如下
cond = CompositeColumnValueCondition(AND)
cond.addCondtition(SingleColumnValueCondition(国家=中国))
cond.addCondtition(SingleColumnValueCondition(age<20))

# 两个条件,所以使用CompositeColumnValueCondition
# 同时两个条件色‘且’的语义,使用AND
# 第一个条件同上,第二个使用了‘<’运算符





嵌套的方式,比如条件如下,比如中国为20岁一下,美国18岁一下


SQL样例:where (国家='中国' and age<20) or (国家='美国' and age<18)






# 伪代码如下
cond = CompositeColumnValueCondition(OR)

subCond1 = CompositeColumnValueCondition(AND)
subCond1.addCondtition(SingleColumnValueCondition(国家=中国))
subCond1.addCondtition(SingleColumnValueCondition(age<20))

subCond2 = CompositeColumnValueCondition(AND)
subCond2.addCondtition(SingleColumnValueCondition(国家=美国))
subCond2.addCondtition(SingleColumnValueCondition(age<18))

cond.addCondtition(subCond1)
cond.addCondtition(subCond2)

# 因为是嵌套条件,所以最外层使用CompositeColumnValueCondition,
# 由于只要满足一个条件即可,所以外围的CompositeColumnValueCondition为‘或’的语义,所以使用OR
# 子条件可以参考之前的描述方式
# 最后将子条件添加到最外层的条件检查中





限制条件



  • 列条件最多 10 个条件的组合。
  • 行和列的条件有效范围,都只能针对当前正在操作的这一行,不支持跨行条件检查。


支持的API



  • PutRow
  • UpdateRow
  • DeleteRow
  • BatchWriteRow


费用计算


如果写入数据或者更新数据删除数据,CU的计算规则和平时调用API的计费规则一致。如果是条件检查失败,会分别消耗1单位的读CU和1单位的写CU。



功能与示例


背景:小明是公司HR,每月会对薪酬表(remuneration)进行定期的调整,薪酬表中记录了相关人员的薪资信息;我们定义了各种不同的更新方式,全方位的展示条件更新的使用方式。



部门(主键)

人员数目

人员HC数目

奖金池

薪资池

技术部门

10

30

32

12034

财务部门

2

2

0

0

行政部门

3

5

3

12

销售部门

0

30

30

35



以下代码使用Java代码演示



场景一:新增一个部门“运营部门”,未来进行招聘,当前录入部门薪酬信息





# 由于是新增部门,我们期望表中不会存在该部门的信息,所以使用 行存在性 的检查,期望这一行
# 不存在(EXPECT_NOT_EXIST), 当原有表中不存在这行数据时,写入成功,否则写入失败。

# PutRow的实现方式
{
RowPutChange rowChange = new RowPutChange(TABLE_NAME);
rowChange.setPrimaryKey(PrimaryKeyBuilder.createPrimaryKeyBuilder()
.addPrimaryKeyColumn(PK, PrimaryKeyValue.fromString("运营部门"))
.build());
rowChange.addColumn("人员数目", ColumnValue.fromLong(0));
rowChange.addColumn("人员HC数目", ColumnValue.fromLong(30));
rowChange.addColumn("奖金池", ColumnValue.fromLong(30));
rowChange.addColumn("薪资池", ColumnValue.fromLong(35));

// 因为“运营部门”是新增,所以期望表中是不存在行的,因此采用行存在性检查:EXPECT_NOT_EXIST
rowChange.setCondition(new Condition(RowExistenceExpectation.EXPECT_NOT_EXIST));
}





场景二:更新行政部门的人员数目,从3更新为5人





# 这里会使用两个条件更新的检查:
# 第一个是行存在性的检查,期望这一行存在;
# 第二个是列的条件检查,期望‘人员数目’是3,则更新,如果不是3则更新失败

# UpdateRow的实现方式
{
RowUpdateChange rowChange = new RowUpdateChange(TABLE_NAME);
rowChange.setPrimaryKey(PrimaryKeyBuilder.createPrimaryKeyBuilder()
.addPrimaryKeyColumn(PK, PrimaryKeyValue.fromString("行政部门"))
.build());
rowChange.put("人员数目", ColumnValue.fromLong(5));

// 行存在性检查,期望存在
Condition condition = new Condition(RowExistenceExpectation.EXPECT_EXIST);

// 列条件检查,期望 ‘人员数目’ 为 3
SingleColumnValueCondition singleColumnValueCondition = new SingleColumnValueCondition(
"人员数目",
SingleColumnValueCondition.CompareOperator.EQUAL,
ColumnValue.fromLong(3)
);
condition.setColumnCondition(singleColumnValueCondition);

rowChange.setCondition(condition);
}





场景三:由于销售部门已经外包给第三方公司,因此决定删除“销售部门”的记录信息





# 这里只需要使用行存在性检查即可,期望“销售部门”的信息存在(EXPECT_EXIST)

# DeleteRow的实现方式
{
RowDeleteChange rowChange = new RowDeleteChange(TABLE_NAME);
rowChange.setPrimaryKey(PrimaryKeyBuilder.createPrimaryKeyBuilder()
.addPrimaryKeyColumn(PK, PrimaryKeyValue.fromString("销售部门"))
.build());

// 行存在性检查,期望存在
Condition condition = new Condition(RowExistenceExpectation.EXPECT_EXIST);
rowChange.setCondition(condition);
}





场景四:增加小团队的HC,小团队人员和HC小于等于5的,每个部门新增2个人头的招聘资源, 比如财务部门就满足这个条件,所以在更新财务部门的HC,更新的过程中使用条件更新检查;





# UpdateRow的实现方式
{
RowUpdateChange rowChange = new RowUpdateChange(TABLE_NAME);
rowChange.setPrimaryKey(PrimaryKeyBuilder.createPrimaryKeyBuilder()
.addPrimaryKeyColumn(PK, PrimaryKeyValue.fromString("财务部门"))
.build());
rowChange.increment(new Column("人员HC数目", ColumnValue.fromLong(2)));

// 行存在性检查
Condition condition = new Condition(RowExistenceExpectation.IGNORE);

CompositeColumnValueCondition conditions = new CompositeColumnValueCondition(CompositeColumnValueCondition.LogicOperator.OR);

{
// 列条件检查,期望 ‘人员数目’ 小于等于5
SingleColumnValueCondition singleColumnValueCondition = new SingleColumnValueCondition(
"人员数目",
SingleColumnValueCondition.CompareOperator.LESS_EQUAL,
ColumnValue.fromLong(5)
);
conditions.addCondition(singleColumnValueCondition);
}

{
// 列条件检查,期望 ‘人员HC数目’ 小于等于5
SingleColumnValueCondition singleColumnValueCondition = new SingleColumnValueCondition(
"人员HC数目",
SingleColumnValueCondition.CompareOperator.LESS_EQUAL,
ColumnValue.fromLong(5)
);
conditions.addCondition(singleColumnValueCondition);
}

condition.setColumnCondition(conditions);

rowChange.setCondition(condition);
}





表格存储使用手册


本文结合Java SDK的接口调用代码,介绍了Tablestore在数据管理方面的基本功能与使用方式。代码已开源在Tablestore-Examples项目中,用户可以直接运行使用。基于样例代码与文章,新用户能更简单、更快速地上手Tablestore,欢迎新、老用户使用与建议。



通过对基础使用功能的持续输出,我们将整理出一套完整的使用手册(含可执行样例),敬请期待。



专家服务


如有疑问或者需要更好的在线支持,欢迎加入钉钉群:“表格存储公开交流群”。群内提供免费的在线专家服务,欢迎扫码加入,群号:23307953


image.png

























相关实践学习
消息队列+Serverless+Tablestore:实现高弹性的电商订单系统
基于消息队列以及函数计算,快速部署一个高弹性的商品订单系统,能够应对抢购场景下的高并发情况。
阿里云表格存储使用教程
表格存储(Table Store)是构建在阿里云飞天分布式系统之上的分布式NoSQL数据存储服务,根据99.99%的高可用以及11个9的数据可靠性的标准设计。表格存储通过数据分片和负载均衡技术,实现数据规模与访问并发上的无缝扩展,提供海量结构化数据的存储和实时访问。 产品详情:https://www.aliyun.com/product/ots
目录
打赏
0
相关文章
表格存储 Node.js SDK 开发入门
本文将结合电商订单场景为例,介绍表格存储 Tablestore Node.js SDK 的基本使用方法。
425 1
Tablestore 控制台入门指南
通过阅读本文您将了解和学习到如何通过表格存储Tablestore控制台快速搭建和操作一款零运维、无限容量的数据库。表格存储Tablestore提供了一定使用量的免费额度(10GB数据存储量、1000万按量读写吞吐),供大家体验测试使用。下面将开始介绍如何通过Tablestore控制台创建实例、创建数据表、读写数据、创建索引、搜索数据、删除索引和数据表。
569 0
Tablestore 控制台入门指南
Tablestore入门指南-GetRange范围查询详解
查询接口 表格存储Tablestore作为大数据存储服务,提供了多种数据输出接口,主要包含: 单行读(GetRow)、 批量读(BatchGetRow)、 范围读(GetRange)、多元索引检索(Search)以及通道服务的数据订阅(Tunnel Service)。
2987 0
表格存储 Python SDK 开发入门
本文将结合电商订单场景为例,介绍表格存储 Tablestore Python SDK 的基本使用方法。
596 0
表格存储 Go SDK 开发入门
本文将结合电商订单场景为例,介绍表格存储 Tablestore Go SDK 的基本使用方法。
326 0
表格存储 Java SDK 开发入门
本文将结合电商订单场景为例,介绍表格存储 Tablestore Java SDK 的基本使用方法。
1083 0
Tablestore入门手册-条件更新
功能说明 条件更新功能只有在满足条件时才对表中的数据进行更改,当不满足条件时更新失败。 比如有如下场景,初始化数据,当数据字段A为-1时,将A的值更新为指定的内容。比如更新为12;如果不是-1则更新失败。   条件更新支持两个维度。分别是行的存在性检查和列值的条件判断。 第一个维度是行的条件检查,包括如下三种条件: IGNORE:忽略,不做存在
1216 0
Tablestore入门手册-UpdateRow接口详解| 1月14号云栖号夜读
今天的首篇文章,讲述了:表格存储Tablestore入门手册系列主要介绍表格存储的各个功能接口和适用场景,帮助客户了解和使用表格存储Tablestore。本文对表格存储Tablestore的UpdateRow接口进行介绍,包括其参数、功能示例、使用场景等。
2834 0
表格存储根据多元索引查询条件直接更新数据
表格存储是否可以根据多元索引查询条件直接更新数据?
125 3

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等