JVM源码分析之堆外内存完全解读

简介: 本文作者来源李嘉鹏。堆外内存有广义的堆外内存和狭义的堆外内存之分。

概述

广义的堆外内存

说到堆外内存,那大家肯定想到堆内内存,这也是我们大家接触最多的,我们在jvm参数里通常设置-Xmx来指定我们的堆的最大值,不过这还不是我们理解的Java堆,-Xmx的值是新生代和老生代的和的最大值,我们在jvm参数里通常还会加一个参数-XX:MaxPermSize来指定持久代的最大值,那么我们认识的Java堆的最大值其实是-Xmx和-XX:MaxPermSize的总和,在分代算法下,新生代,老生代和持久代是连续的虚拟地址,因为它们是一起分配的,那么剩下的都可以认为是堆外内存(广义的)了,这些包括了jvm本身在运行过程中分配的内存,codecache,jni里分配的内存,DirectByteBuffer分配的内存等等

狭义的堆外内存

而作为java开发者,我们常说的堆外内存溢出了,其实是狭义的堆外内存,这个主要是指java.nio.DirectByteBuffer在创建的时候分配内存,我们这篇文章里也主要是讲狭义的堆外内存,因为它和我们平时碰到的问题比较密切

JDK/JVM里DirectByteBuffer的实现

DirectByteBuffer通常用在通信过程中做缓冲池,在mina,netty等nio框架中屡见不鲜,先来看看JDK里的实现:
image.png

通过上面的构造函数我们知道,真正的内存分配是使用的Bits.reserveMemory方法
image.png

通过上面的代码我们知道可以通过-XX:MaxDirectMemorySize来指定最大的堆外内存,那么我们首先引入两个问题

  • 堆外内存默认是多大
  • 为什么要主动调用System.gc()

堆外内存默认是多大

如果我们没有通过-XX:MaxDirectMemorySize来指定最大的堆外内存,那么默认的最大堆外内存是多少呢,我们还是通过代码来分析
上面的代码里我们看到调用了sun.misc.VM.maxDirectMemory()
image.png

看到上面的代码之后是不是误以为默认的最大值是64M?其实不是的,说到这个值得从java.lang.System这个类的初始化说起
image.png

上面这个方法在jvm启动的时候对System这个类做初始化的时候执行的,因此执行时间非常早,我们看到里面调用了sun.misc.VM.saveAndRemoveProperties(props):
image.png

如果我们通过-Dsun.nio.MaxDirectMemorySize指定了这个属性,只要它不等于-1,那效果和加了-XX:MaxDirectMemorySize一样的,如果两个参数都没指定,那么最大堆外内存的值来自于directMemory = Runtime.getRuntime().maxMemory(),这是一个native方法
image.png

其中在我们使用CMS GC的情况下的实现如下,其实是新生代的最大值-一个survivor的大小+老生代的最大值,也就是我们设置的-Xmx的值里除去一个survivor的大小就是默认的堆外内存的大小了
image.png

为什么要主动调用System.gc

既然要调用System.gc,那肯定是想通过触发一次gc操作来回收堆外内存,不过我想先说的是堆外内存不会对gc造成什么影响(这里的System.gc除外),但是堆外内存的回收其实依赖于我们的gc机制,首先我们要知道在java层面和我们在堆外分配的这块内存关联的只有与之关联的DirectByteBuffer对象了,它记录了这块内存的基地址以及大小,那么既然和gc也有关,那就是gc能通过操作DirectByteBuffer对象来间接操作对应的堆外内存了。DirectByteBuffer对象在创建的时候关联了一个PhantomReference,说到PhantomReference它其实主要是用来跟踪对象何时被回收的,它不能影响gc决策,但是gc过程中如果发现某个对象除了只有PhantomReference引用它之外,并没有其他的地方引用它了,那将会把这个引用放到java.lang.ref.Reference.pending队列里,在gc完毕的时候通知ReferenceHandler这个守护线程去执行一些后置处理,而DirectByteBuffer关联的PhantomReference是PhantomReference的一个子类,在最终的处理里会通过Unsafe的free接口来释放DirectByteBuffer对应的堆外内存块
JDK里ReferenceHandler的实现:
image.png

可见如果pending为空的时候,会通过lock.wait()一直等在那里,其中唤醒的动作是在jvm里做的,当gc完成之后会调用如下的方法VM_GC_Operation::doit_epilogue(),在方法末尾会调用lock的notify操作,至于pending队列什么时候将引用放进去的,其实是在gc的引用处理逻辑中放进去的,针对引用的处理后面可以专门写篇文章来介绍
image.png

对于System.gc的实现,之前写了一篇文章来重点介绍,JVM源码分析之SystemGC完全解读,它会对新生代的老生代都会进行内存回收,这样会比较彻底地回收DirectByteBuffer对象以及他们关联的堆外内存,我们dump内存发现DirectByteBuffer对象本身其实是很小的,但是它后面可能关联了一个非常大的堆外内存,因此我们通常称之为『冰山对象』,我们做ygc的时候会将新生代里的不可达的DirectByteBuffer对象及其堆外内存回收了,但是无法对old里的DirectByteBuffer对象及其堆外内存进行回收,这也是我们通常碰到的最大的问题,如果有大量的DirectByteBuffer对象移到了old,但是又一直没有做cms gc或者full gc,而只进行ygc,那么我们的物理内存可能被慢慢耗光,但是我们还不知道发生了什么,因为heap明明剩余的内存还很多(前提是我们禁用了System.gc)。

为什么要使用堆外内存

DirectByteBuffer在创建的时候会通过Unsafe的native方法来直接使用malloc分配一块内存,这块内存是heap之外的,那么自然也不会对gc造成什么影响(System.gc除外),因为gc耗时的操作主要是操作heap之内的对象,对这块内存的操作也是直接通过Unsafe的native方法来操作的,相当于DirectByteBuffer仅仅是一个壳,还有我们通信过程中如果数据是在Heap里的,最终也还是会copy一份到堆外,然后再进行发送,所以为什么不直接使用堆外内存呢。对于需要频繁操作的内存,并且仅仅是临时存在一会的,都建议使用堆外内存,并且做成缓冲池,不断循环利用这块内存。

为什么不能大面积使用堆外内存

如果我们大面积使用堆外内存并且没有限制,那迟早会导致内存溢出,毕竟程序是跑在一台资源受限的机器上,因为这块内存的回收不是你直接能控制的,当然你可以通过别的一些途径,比如反射,直接使用Unsafe接口等,但是这些务必给你带来了一些烦恼,Java与生俱来的优势被你完全抛弃了—开发不需要关注内存的回收,由gc算法自动去实现。另外上面的gc机制与堆外内存的关系也说了,如果一直触发不了cms gc或者full gc,那么后果可能很严重。

转载自PerfMa社区

相关文章
|
4月前
|
Arthas 存储 算法
深入理解JVM,包含字节码文件,内存结构,垃圾回收,类的声明周期,类加载器
JVM全称是Java Virtual Machine-Java虚拟机JVM作用:本质上是一个运行在计算机上的程序,职责是运行Java字节码文件,编译为机器码交由计算机运行类的生命周期概述:类的生命周期描述了一个类加载,使用,卸载的整个过类的生命周期阶段:类的声明周期主要分为五个阶段:加载->连接->初始化->使用->卸载,其中连接中分为三个小阶段验证->准备->解析类加载器的定义:JVM提供类加载器给Java程序去获取类和接口字节码数据类加载器的作用:类加载器接受字节码文件。
391 55
|
5月前
|
Arthas 监控 Java
Arthas memory(查看 JVM 内存信息)
Arthas memory(查看 JVM 内存信息)
342 6
|
8月前
|
存储 设计模式 监控
快速定位并优化CPU 与 JVM 内存性能瓶颈
本文介绍了 Java 应用常见的 CPU & JVM 内存热点原因及优化思路。
872 166
|
6月前
|
存储 缓存 算法
JVM简介—1.Java内存区域
本文详细介绍了Java虚拟机运行时数据区的各个方面,包括其定义、类型(如程序计数器、Java虚拟机栈、本地方法栈、Java堆、方法区和直接内存)及其作用。文中还探讨了各版本内存区域的变化、直接内存的使用、从线程角度分析Java内存区域、堆与栈的区别、对象创建步骤、对象内存布局及访问定位,并通过实例说明了常见内存溢出问题的原因和表现形式。这些内容帮助开发者深入理解Java内存管理机制,优化应用程序性能并解决潜在的内存问题。
291 29
JVM简介—1.Java内存区域
|
6月前
|
缓存 监控 算法
JVM简介—2.垃圾回收器和内存分配策略
本文介绍了Java垃圾回收机制的多个方面,包括垃圾回收概述、对象存活判断、引用类型介绍、垃圾收集算法、垃圾收集器设计、具体垃圾回收器详情、Stop The World现象、内存分配与回收策略、新生代配置演示、内存泄漏和溢出问题以及JDK提供的相关工具。
JVM简介—2.垃圾回收器和内存分配策略
|
6月前
|
存储 设计模式 监控
如何快速定位并优化CPU 与 JVM 内存性能瓶颈?
如何快速定位并优化CPU 与 JVM 内存性能瓶颈?
135 0
如何快速定位并优化CPU 与 JVM 内存性能瓶颈?
|
7月前
|
存储 算法 Java
JVM: 内存、类与垃圾
分代收集算法将内存分为新生代和老年代,分别使用不同的垃圾回收算法。新生代对象使用复制算法,老年代对象使用标记-清除或标记-整理算法。
88 6
|
9月前
|
存储 Java 程序员
【JVM】——JVM运行机制、类加载机制、内存划分
JVM运行机制,堆栈,程序计数器,元数据区,JVM加载机制,双亲委派模型
185 10
|
10月前
|
缓存 Prometheus 监控
Elasticsearch集群JVM调优设置合适的堆内存大小
Elasticsearch集群JVM调优设置合适的堆内存大小
1632 1
|
9月前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。