零门槛构建弹性大数据云分析平台

本文涉及的产品
EMR Serverless Spark 免费试用,1000 CU*H 有效期3个月
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 从基础设施、运维管理、云生态等角度,详细了解下云托管的部分优势。

作者:鲍远松
原文链接


大数据和大数据分析成为时下企业关注的焦点,大数据分析平台正在从企业的高配变为标配,是企业实现“一切业务数据化,一切数据业务化”目标的基础平台。

阿里云智能高级解决方案架构师鲍远松,分享《零门槛构建弹性大数据云分析平台》,过程中对大数据分析平台建设进行阶段划分,并对每阶段进行了详尽的阐述。

如下图,为大数据分析平台建设的四个阶段,分别是自建、云托管、云服务和云原生。

image.png

大数据分析平台建设之自建

  • 为什么要自建大数据分析平台呢?主要原因有三:
  1. 传统大数据分析技术已经不能满足大数据分析,需要通过引入新技术进行提升。
  2. 早期大数据技术相对不成熟、不可靠,需要专门的技术人才去研究。
  3. 市场上缺乏有效的大数据分析的成功案例和实践,企业必须摸着石头过河。
  • 自建大数据分析平台属于重资产模式,存在多方面不足,主要有如下几点:

周期长:整个建设周期特别长,涉及机房选择、硬件采购、集群部署、测试调优、数据服务、运维管理等诸多环节。

成本高:成本分为两类,一类是服务器、存储、网络、运维、IDC 等显性成本,另一类是业务影响、资源闲置、弹性扩容、一次性资金投入等隐性成本。这些成本的投入是确定的,但产出却是未知的。

门槛高:近些年大数据技术蓬勃发展,数据集成、数据存储、分析计算及数据作业每个维度都有很多细分的技术,任何一个技术都需要投入专人进行深入研究,对于普通企业来说人才门槛很高。

见效慢:大数据分析平台需要自始至终不断地进行迭代和修正,直至数据质量符合预期,数据分析结果可信,才能真正达到极致弹性性能、高可靠、多场景应用的效果。

大数据分析平台建设之云托管

自建大数据分析平台种种不足的背景下,云托管应需而生,原因有三:

  1. 企业甩掉重资产的包袱。
  2. 大数据技术趋于成熟,企业不再聚焦于大数据技术本身,而是需要一批具有大数据技能的人来做大数据的开发。
  3. 云厂商结合自身的优势,提供了云上大数据托管平台。

自建大数据分析平台通常是基于开源 Hadoop 平台,而云托管是把自建开源 Hadoop 平台转化为企业级、标准型大数据分析平台,具备统一集群管理、完备的监控报警、计算与存储分离、弹性扩容、按需构建、数据安全、低门槛运维、丰富云生态对接等优势。

EMR 提供了基础资源、平台管理、数据存储、数据集成、计算引擎、数据使用和作业管理等平台能力,对于所有组件都提供了完备的监控报警,任何组件异常都可以第一时间做报警并且通知到用户,同时基于平台提供了智能的运维管理、调度等功能。

接下来我们从基础设施、运维管理、云生态等角度,详细了解下云托管的部分优势。

云托管之基础设施

image.png

首先,云上有丰富的产品规格族,阿里云整个虚拟机分为通用计算、异构计算、裸金属&高性能计算三大类,每一类满足不同的场景,可以快速构建不同场景下的大数据分析平台。

其次,利用云的弹性,计算和存储资源可以进行独立扩充,满足业务高峰期或业务对极致性能的追求的同时,还可以灵活的按需构建。

最后,云上构建大数据分析平台在成本上可以做大量优化,可以根据业务特性灵活选择购买方式,如通过 Spot Instance 大幅降低计算节点的成本。

云托管之运维管理

image.png

运维整个大数据分析平台非常复杂,需要专业的人才和大量的投入。从基础运维到管理运维,再到组件运维,云厂商提供了多维度运维能力。

基础运维:云厂商借助自身大规模服务器运维经验构建 AlOps 系统,可以提前对硬件做检测分析、发现故障后快速进行主动运维,减少对业务的影响。

管理运维:EMR 实现一键部署、开箱即用,还提供统一的配置管理、平台状态监控和故障报警等功能。

组件运维:组件运维是大数据分析平台最复杂的部分,当进行版本升级时,由于组件之间存在着千丝万缕的关联,保证兼容是重中之重。

组件运维还有一个很重要的点就是性能优化,云厂商会结合自身云计算优势对底层基础设施进行优化,对内核引擎进行优化,帮助开源组件提升性能。

云托管之云生态

云上有丰富的生态,避免后来者重复造轮子或从零开始,如下图:

底层存储在云上可以提供 OSS 对象存储、HDFS 存储,HDFS 存储可以直接去无缝访问 OSS 对象存储,与访问 HDFS 文件没有任何差别,这样一来,就可以灵活的进行数据归档和成本调优。

在数据源方面, 支持 OSS、SLS、RDS、消息队列等服务作为数据源;在计算引擎方面,云上 EMR 平台可与 MaxCompute、Flink、Tensorflow 引擎进行打通。

在融合方面,云上提供 DataWorks 服务,通过 DataWorks 可以把 Hadoop 整个上层元数据的管理、数据质量管理进行统一。

除此之外,云上还提供 DataV、QuickBI 等分析展示能力。

除以上概述内容外,后续还有云服务和云原生等方面更多干货,请戳视频进行观看


阿里巴巴开源大数据技术团队成立Apache Spark中国技术社区,定期推送精彩案例,技术专家直播,问答区数个Spark技术同学每日在线答疑,只为营造纯粹的Spark氛围,欢迎钉钉扫码加入!
image.png

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
10天前
|
SQL 分布式计算 数据挖掘
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
川航选择引入 SelectDB 建设湖仓一体大数据分析引擎,取得了数据导入效率提升 3-6 倍,查询分析性能提升 10-18 倍、实时性提升至 5 秒内等收益。
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
|
13天前
|
存储 SQL 大数据
【重磅发布】AllData数据中台核心功能:湖仓一体化平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
【重磅发布】AllData数据中台核心功能:湖仓一体化平台
|
7天前
|
数据采集 机器学习/深度学习 数据可视化
探索大数据分析的无限可能:R语言的应用与实践
探索大数据分析的无限可能:R语言的应用与实践
48 9
|
21天前
|
SQL 存储 HIVE
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
本文整理自鹰角网络大数据开发工程师朱正军在Flink Forward Asia 2024上的分享,主要涵盖四个方面:鹰角数据平台架构、数据湖选型、湖仓一体建设及未来展望。文章详细介绍了鹰角如何构建基于Paimon的数据湖,解决了Hudi入湖的痛点,并通过Trino引擎和Ranger权限管理实现高效的数据查询与管控。此外,还探讨了湖仓一体平台的落地效果及未来技术发展方向,包括Trino与Paimon的集成增强、StarRocks的应用以及Paimon全面替换Hive的计划。
144 1
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
|
11天前
|
SQL 存储 HIVE
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
|
13天前
|
机器学习/深度学习 数据采集 分布式计算
大数据分析中的机器学习基础:从原理到实践
大数据分析中的机器学习基础:从原理到实践
52 3
|
13天前
|
存储 分布式计算 大数据
基于阿里云大数据平台的实时数据湖构建与数据分析实战
在大数据时代,数据湖作为集中存储和处理海量数据的架构,成为企业数据管理的核心。阿里云提供包括MaxCompute、DataWorks、E-MapReduce等在内的完整大数据平台,支持从数据采集、存储、处理到分析的全流程。本文通过电商平台案例,展示如何基于阿里云构建实时数据湖,实现数据价值挖掘。平台优势包括全托管服务、高扩展性、丰富的生态集成和强大的数据分析工具。
|
22天前
|
存储 分布式计算 物联网
美的楼宇科技基于阿里云 EMR Serverless Spark 构建 LakeHouse 湖仓数据平台
美的楼宇科技基于阿里云 EMR Serverless Spark 建设 IoT 数据平台,实现了数据与 AI 技术的有效融合,解决了美的楼宇科技设备数据量庞大且持续增长、数据半结构化、数据价值缺乏深度挖掘的痛点问题。并结合 EMR Serverless StarRocks 搭建了 Lakehouse 平台,最终实现不同场景下整体性能提升50%以上,同时综合成本下降30%。
|
12天前
|
SQL 人工智能 大数据
【4月重点功能发布】阿里云大数据+ AI 一体化平台
【4月重点功能发布】阿里云大数据+ AI 一体化平台
|
12天前
|
SQL 人工智能 分布式计算
【3月重点功能发布】阿里云大数据+ AI 一体化平台
【3月重点功能发布】阿里云大数据+ AI 一体化平台