案例酷 | 机器人瓦力来了:训练AI吞食垃圾 瀚蓝环境探索破解垃圾围城难题

简介: 为摆脱对经验的过度依赖,瀚蓝环境意识到更高效的数字化手段是可行办法。通过将经验与数据中的隐性知识转化为显性知识,并嵌入到机器中,让机器协助人类来完成复杂焚烧过程的复杂决策与控制。但摆在眼前的问题是,垃圾焚烧领域鲜有数据科学家,懂行业机理模型的数据科学家更是凤毛麟角,行业算法处于空白。于是,瀚蓝环境找到阿里云工业大脑团队,希望借助其在数据与算法上的优势,加之与瀚蓝环境专家经验结合,共同开发垃圾焚烧工艺优化算法,优化垃圾焚烧的稳定性。工业大脑落地场景的选择至关重要。数据可用性、风险可控、可实施、高收益与可复用是选择优先场景需要考虑的关键因素。

引言:随着我国经济快速发展和城市人口不断增长,以及新型的城镇化建设,很多地方垃圾围城的问题正日益严峻。垃圾在填埋过程中会产生大量的臭气、沼气和二氧化碳以及大量的细菌病毒等微生物,会对人居环境产生恶劣的影响,高效的做法是将垃圾通过现代化焚烧技术,实现无害化,同时焚烧余热还可供发电,既环保有效、又能变废为宝。根据《“十三五”全国城镇生活垃圾无害化处理设施建设规划》,生活垃圾焚烧比例将由 2015 年的 28.6%提升至 2020 年的 50%。预计“十三五”期间垃圾焚烧建设市场规模将高达两千亿。

对于垃圾焚烧企业来说,垃圾的成分变化多端,如何提升焚烧控制的稳定性,是一个重要的技术挑战。焚烧工程师通过调节焚烧炉的各种参数,确保垃圾焚烧充分、蒸汽量稳定,一方面减少锅炉设备受损,另一方面可以更稳定发电并降低烟气污染物的排放。但是,每天的生活垃圾不一样,成分也很复杂,一年四季受温度和湿度影响不断变化,要做到稳定的燃烧很不容易。

长久以来,焚烧控制主要依赖于人的判断,靠的是经验积累。老师傅经验丰富,通过调节锅炉温度和进风大小,就可以让垃圾焚烧得更充分;年轻师傅经验少,容易出现判断失误的问题,稳定性就差很多。此外,老师傅如果出现身体和精神状态不佳,影响工作状态,也会有判断失误的状况。人工智能的参与,提供了很多想象的空间。

垃圾焚烧技术进步路上障碍

瀚蓝环境股份有限公司(简称瀚蓝环境)是一家专注于环境服务产业的上市公司。公司拥有22个生活垃圾焚烧发电项目,日生活垃圾焚烧发电总规模33100吨。仅是广东佛山南海厂区的六台焚烧锅炉,每天就能“消化”近3000吨垃圾,发电150万度,足以满足南海区16万户40万人的生活用电需求。

虽说垃圾焚烧发电是朝阳产业,市场潜力巨大,但过去多年,进一步提升垃圾焚烧稳定性的关键技术,一直没有突破。

瀚蓝环境固废事业部信息管理部总监赵浩表示,整个垃圾焚烧发电的过程,主要是靠锅炉师傅通过调节焚烧炉的各种参数,尽量做到让垃圾的燃烧更充分、蒸汽更稳定。而限制技术进步的最大阻碍,就出在焚烧过程对人工经验的过度依赖,这给技术进步带来诸多障碍。

一是经验存在偏差与不稳定。不同工艺专家技术水平参差不齐,调出来的效果相差较大。此外,现场人员难以长时间集中精力观察参数变化,导致焚烧炉无法发挥到最佳状态,垃圾焚烧的稳定性不足。

二是经验难以固化与传承。经验都存在老师傅的脑袋里。培养一位合格的工艺专家需要 1-2年的时间,一旦离岗,经验也随之带走,没有任何积累留给新人。而培养一名新员工直到上岗,则要耗费大量精力与时间。长时间的大强度劳动,也加剧了工人的流失。

此外,经验还存在天花板。即便再有经验的老师傅,也只能做到对一部分参数的认知,而整个垃圾焚烧过程涉及上千种参数,远超出人脑的计算与理解能力。

引入AI:数据+模型+经验=最优参数推荐

为摆脱对经验的过度依赖,瀚蓝环境意识到更高效的数字化手段是可行办法。通过将经验与数据中的隐性知识转化为显性知识,并嵌入到机器中,让机器协助人类来完成复杂焚烧过程的复杂决策与控制。但摆在眼前的问题是,垃圾焚烧领域鲜有数据科学家,懂行业机理模型的数据科学家更是凤毛麟角,行业算法处于空白。于是,瀚蓝环境找到阿里云工业大脑团队,希望借助其在数据与算法上的优势,加之与瀚蓝环境专家经验结合,共同开发垃圾焚烧工艺优化算法,优化垃圾焚烧的稳定性。

工业大脑落地场景的选择至关重要。数据可用性、风险可控、可实施、高收益与可复用是选择优先场景需要考虑的关键因素。

垃圾焚烧发电主要包括垃圾推料、垃圾焚烧、烟气处理、污水处理、汽轮机发电五个环节。双方团队经过多轮沟通,最终选择先以垃圾推料(将垃圾在最佳时间送入焚烧炉,达到充分燃烧)做为切入点。原因就在于这个环节已经具备一定数据基础 (系统已接入上千个实时测点,瀚蓝环境也是目前国内垃圾焚烧行业同类测点,数据量积累最多的公司之一)、且该环节依靠人工操作,AI发挥空间大,并且各电厂面临的问题是共性的,复制性强。

明确了落地场景,瀚蓝环境与阿里云大数据专家开始共同制定垃圾焚烧优化的方案思路,整个过程好比一个菜谱的开发过程,包括精选食材、调试配方、反复试菜、直到最终菜谱的生成。

第一步:关键参数识别 (选择食材)

垃圾焚烧的全过程充斥着复杂的物理与化学变化,涉及多达2000+个实时测点数据,因此需要过滤出对焚烧稳定性影响最大的关键参数。通过历史数据分析与专家经验,识别出包括推料行程、推料动作、一次风量、一次风压、二次风量、炉膛温度、烟气含氧量、主蒸汽压力等多达30个测点数据,用于下一步的分析与模型训练。

第二步:模型训练 (调试配方)

锁定关键参数后,接下来输入到工业大脑平台上的仿真预测模型,进行垃圾焚烧过程的模型训练,实时预测焚烧产生的蒸汽情况。通过对每次垃圾推料生产的前后关系分析,比如推料前的炉型状态,推料动作,以及推料后的焚烧反应,构建数据的输入输出关系模型。训练过的焚烧炉蒸汽量仿真预测模型可以准确预测90秒后的蒸汽量,准确度到达95%,为后续推料时间提供决策依据。此外,通过历史有效推料数据及专家经验,建立各关键参数的特征数据与推料时间的对应关系,在此基础上结合蒸汽量预测值预判,实现更加精准的推料时间推荐。

第三步:算法辅助决策 (菜谱生成)

该阶段, 算法模型分析的结果通过API接口的方式把推荐工艺参数实时的提供出来。产品配套的人机交互界面,会直接部署到工厂控制室现场, 可以实时的告诉工人,什么时候该推料,以及如何推料等操作建议。工人只需要按提示直接生产就可以了。

image.png

经过数月的密集研发和测试,双方团队开发出了首个AI垃圾焚烧优化方案,结合瀚蓝掌握的海量垃圾焚烧数据,AI可以进行更精准更稳定的监测、预判和及时调整。结果发现,过去操作员4个小时内需要操作30次,才能让垃圾焚烧过程保持稳定,而如今在AI的协助下,干预6次即可。而且工业大脑辅助人的方式对比单纯人工操作,系统可以提升约1%~2%的蒸汽产量,锅炉蒸汽量稳定性提升20%。

接下来, 垃圾焚烧炉AI平台将完成以下三项任务:

第一,从局部试验到全局复制

当前, 工业大脑还只是在局部范围内尝试,仅在几台锅炉上进行验证。很快,算法模型将被复用到公司的近百座焚烧炉上,让每一座锅炉都能获得AI“手把手”的操作指导。此外,AI既然能在焚烧环节取得效果,一定还存在很多应用场景等待挖掘。

第二,打通决策到执行的最后一公里

算法将会直接与锅炉系统连接,实现对垃圾焚烧过程的自动控制。由过去的人控制机器转为人监测机器,无需人工干预,进一步降低对人工经验的依赖。

第三,赋能产业智能化升级

像瀚蓝环境这样的焚烧炉,中国还有近千座。通过将焚烧炉稳定优化模型沉淀到工业大脑平台之上,对全行业的开放。借助平台优势拉低人工智能的门槛,让全中国的焚烧炉都能享受到智能带来的红利。目前,在阿里云与浙江省能源集团的合作中,AI垃圾焚烧优化方案已实现蒸汽量1.8%提升,可为企业每年增加百万元利润。

阿里云研究院高级战略专家王岳表示,越是看似离AI技术遥远的行业,一旦与其发生化学反应,所产生的能量将会是巨大的。在未来相当长的时间,行业内专家与行业外数据科学家的跨界组合将会是推动工业智能落地的关键力量。但这还不够,工业智能未来一定是朝着平台化发展的。平台x(数据+算法)的互联网模式所产生的杠杆效应,可以支撑工业智能应用以百倍速复制, 最终撬动整个产业的数智化转型。

文:王岳、双宏、巢恬逸

文章来源:阿里研究所

相关文章
|
4天前
|
JSON 人工智能 数据格式
AI计算机视觉笔记二十六:YOLOV8自训练关键点检测
本文档详细记录了使用YOLOv8训练关键点检测模型的过程。首先通过清华源安装YOLOv8,并验证安装。接着通过示例权重文件与测试图片`bus.jpg`演示预测流程。为准备训练数据,文档介绍了如何使用`labelme`标注工具进行关键点标注,并提供了一个Python脚本`labelme2yolo.py`将标注结果从JSON格式转换为YOLO所需的TXT格式。随后,通过Jupyter Notebook可视化标注结果确保准确性。最后,文档展示了如何组织数据集目录结构,并提供了训练与测试代码示例,包括配置文件`smoke.yaml`及训练脚本`train.py`,帮助读者完成自定义模型的训练与评估。
|
4天前
|
人工智能 开发工具 计算机视觉
AI计算机视觉笔记三十:yolov8_obb旋转框训练
本文介绍了如何使用AUTODL环境搭建YOLOv8-obb的训练流程。首先创建虚拟环境并激活,然后通过指定清华源安装ultralytics库。接着下载YOLOv8源码,并使用指定命令开始训练,过程中可能会下载yolov8n.pt文件。训练完成后,可使用相应命令进行预测测试。
|
3天前
|
人工智能 PyTorch 算法框架/工具
AI计算机视觉笔记二十二:基于 LeNet5 的手写数字识别及训练
本文介绍了使用PyTorch复现LeNet5模型并检测手写数字的过程。通过搭建PyTorch环境、安装相关库和下载MNIST数据集,实现了模型训练与测试。训练过程涉及创建虚拟环境、安装PyTorch及依赖库、准备数据集,并编写训练代码。最终模型在测试集上的准确率达到0.986,满足预期要求。此项目为后续在RK3568平台上部署模型奠定了基础。
|
4天前
|
人工智能 测试技术 PyTorch
AI计算机视觉笔记二十四:YOLOP 训练+测试+模型评估
本文介绍了通过正点原子的ATK-3568了解并实现YOLOP(You Only Look Once for Panoptic Driving Perception)的过程,包括训练、测试、转换为ONNX格式及在ONNX Runtime上的部署。YOLOP由华中科技大学团队于2021年发布,可在Jetson TX2上达到23FPS,实现了目标检测、可行驶区域分割和车道线检测的多任务学习。文章详细记录了环境搭建、训练数据准备、模型转换和测试等步骤,并解决了ONNX转换过程中的问题。
|
4天前
|
存储 人工智能 数据可视化
AI计算机视觉笔记二十一:PaddleOCR训练自定义数据集
在完成PaddleOCR环境搭建与测试后,本文档详细介绍如何训练自定义的车牌检测模型。首先,在`PaddleOCR`目录下创建`train_data`文件夹存放数据集,并下载并解压缩车牌数据集。接着,复制并修改配置文件`ch_det_mv3_db_v2.0.yml`以适应训练需求,包括设置模型存储目录、训练可视化选项及数据集路径。随后,下载预训练权重文件并放置于`pretrain_models`目录下,以便进行预测与训练。最后,通过指定命令行参数执行训练、断点续训、测试及导出推理模型等操作。
|
4天前
|
机器学习/深度学习 人工智能 测试技术
AI计算机视觉笔记二十五:ResNet50训练部署教程
该项目旨在训练ResNet50模型并将其部署到RK3568开发板上。首先介绍了ResNet50网络,该网络由何恺明等人于2015年提出,解决了传统卷积神经网络中的退化问题。项目使用车辆分类数据集进行训练,并提供了数据集下载链接。环境搭建部分详细描述了虚拟环境的创建和所需库的安装。训练过程中,通过`train.py`脚本进行了15轮训练,并可视化了训练和测试结果。最后,项目提供了将模型转换为ONNX和PT格式的方法,以便在RK3568上部署。
|
4天前
|
人工智能 计算机视觉 Python
AI计算机视觉笔记十九:Swin Transformer训练
本文介绍了使用自定义数据集训练和测试目标检测模型的步骤。首先,通过安装并使用标注工具labelme准备数据集;接着修改配置文件以适应自定义类别,并调整预训练模型;然后解决训练过程中遇到的依赖冲突问题并完成模型训练;最后利用测试命令验证模型效果。文中提供了具体命令及文件修改指导。
|
10天前
|
人工智能 PyTorch 算法框架/工具
AI计算机视觉笔记十二:基于 LeNet5 的手写数字识别及训练
本文档介绍了如何使用PyTorch框架复现经典的LeNet5模型,并通过MNIST数据集进行训练与测试。首先,创建虚拟环境并安装所需库,接着下载MNIST数据集。训练部分涉及四个主要文件:`LeNet5.py`、`myDatast.py`、`readMnist.py` 和 `train.py`。通过这些文件搭建模型并完成训练过程。最后,通过测试脚本验证模型准确性,结果显示准确率达到0.986,满足预期需求。文档还提供了详细的环境配置和代码实现细节。
|
4天前
|
机器学习/深度学习 人工智能 计算机视觉
AI计算机视觉笔记二十三:PP-Humanseg训练及onnxruntime部署
本文介绍了如何训练并使用PaddleSeg的人像分割模型PP-HumanSeg,将其导出为ONNX格式,并使用onnxruntime进行部署。首先在AutoDL服务器上搭建环境并安装所需库,接着下载数据与模型,完成模型训练、评估和预测。最后,通过paddle2onnx工具将模型转换为ONNX格式,并编写预测脚本验证转换后的模型效果。此过程适用于希望在不同平台上部署人像分割应用的开发者。
|
4天前
|
人工智能 数据处理 计算机视觉
AI计算机视觉笔记十六:yolov5训练自己的数据集
本文介绍了一种利用云服务器AutoDL训练疲劳驾驶行为检测模型的方法。由于使用本地CPU训练效率低下,作者选择了性价比高的AutoDL云服务器。首先,从网络获取了2000多张疲劳驾驶行为图片并使用labelimg软件进行标注。接着,详细介绍了在云服务器上创建实例、上传数据集和YOLOv5模型、修改配置文件以及开始训练的具体步骤。整个训练过程耗时约3小时,最终生成了可用于检测的模型文件。

热门文章

最新文章