【译】如何用Apache Spark和LightGBM构建机器学习模型来预测信用卡欺诈

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
EMR Serverless Spark 免费试用,1000 CU*H 有效期3个月
简介: 如何用Apache Spark和LightGBM构建机器学习模型来预测信用卡欺诈

如何用Apache Spark和LightGBM构建机器学习模型来预测信用卡欺诈

原文链接 https://towardsdatascience.com/how-to-perform-credit-card-fraud-detection-at-large-scale-with-apache-spark-and-lightgbm-61a982de8672


编译:抚月,阿里巴巴计算平台事业部 EMR 高级工程师,Apache HDFS Committer,目前从事开源大数据存储和优化方面的工作。


任何一家发行信用卡的金融机构,都要做防欺诈检测。他们平台上每天不断的成千上万的交易记录,他们用这些大规模的数据集来做检测。虽然在个人电脑上,在Jupyter notebook上面对小量的静态数据集做机器学习的模型训练,相对比较简单。 但是在金融机构的真实环境下,大量的交易数据存放在Hadoop或者数据湖里,这时部署机器学习模型就存在巨大挑战。这篇文章,我将向你们展示如何在Apache Spark环境下,利用LightGBM来构建和训练模型。 LightGBM被认为是Gradient Boosting算法的高效实现,在数据科学领域被广泛使用。

Apache Spark是一个in-memory的集群化的运行环境,用来存储和处理数据,比起从(单机)SSD或磁盘访问数据会快上千倍。假设数据集存在于Hadoop,S3,数据库或本地文件,第一步需要让Spark集群可以访问这些数据(将数据转为Spark dataframe)。在这个例子中,我将Machine Learning Group of ULB的数据,以CSV格式加载到Spark dataframe中。 Spark集群是6gb内存,部署了Databricks社区版。下面是用Spark加载数据的代码:

# File location and type
file_location = "/FileStore/tables/creditcard.csv"
file_type = "csv"

# CSV options
infer_schema = "true"
first_row_is_header = "true"
delimiter = ","

df = spark.read.format(file_type) \
  .option("inferSchema", infer_schema) \
  .option("header", first_row_is_header) \
  .option("sep", delimiter) \
  .load(file_location)

数据集包含了300,000条记录,31个变量,是关于欧洲信用卡持有者的交易记录。其中28个变量是数值型,是对一些未披露的原始参数进行主成分分析(PCA)得到的。剩下的3个变量是交易数量,交易时间(秒,相对于第一次交易),交易标签(表示是否真实或诈骗)。虽然数据集比较小,但是我们选择了Apache Spark来做训练,因此相同的代码同样适用于大规模的数据集。

数据集中,标记为真实的数据, 和标记为诈骗的数据相比,数量严重不平衡。其中只有492个样本是跟标记为诈骗的交易有关,比起整个数据集来说量很小。你可以访问这个数据集

下一步,是从dataframe中,选择我们想要作为输入变量和目标变量的列。当构建生产级的ML模型时,比较好的做法是做一些数据变换,比如用LabelEncoder或者OneHotEncoder的方式,将类目列转为数值列,作为整个pipeline当中的几个stage。这个pipeline可以用来变换训练、验证、或者测试数据,而不会将测试用例暴露给训练数据(当我们做standardized scaling的时候)。而且代码也好维护。可以参考Spark的pipeline接口文档

feature_cols = ["V" + str(i) for i in range(1,29)] + ["Amount"]
assembler = VectorAssembler(inputCols=feature_cols, outputCol="features")
stages = [assembler]

下一步,我们添加一个LightGBMClassifier实例到pipeline。LightGBMClassifier这个类包含在MMLSpark库中,是由Microsoft Azure团队维护的一个库。按照这个步骤,可以将其添加到集群中。我通过maven依赖引入了mmlspark这个包,使用版本0.17。然后,可以通过Python import LightGBMClassifier。

使用LightGBM的时候,对超参数(hyperparameters)进行调优非常重要,比如叶子数量、最大深度、迭代次数等。对相同数据训练出来的模型,性能差异可能会因为超参数的值的不同而非常大。

通常,这需要进行一个交叉验证实验,用一些超参数值空间搜索策略,比如全网格搜索、随机搜索、贝叶斯优化,或者树状结构Parzen估计方法(TPE)来找到超参数的最优值,从而使得验证数据集上模型的性能最大化。通过最小化一些预定义的错误量,比如二进制错误;或者最大化一些分数,比如ROC曲线下的面积或者F1分数。

根据我们想搜索的参数值空间的大小,以及我们期望得到的模型的性能的不同,这些搜索可能会跑很长时间。在这种情况下,我决定调优7个LightGBM模型的超参数。大多数参数是实值,意味着搜索的参数空间是非常深的。

我用了Kaggle执行环境里面的Hyperopt库。为了在有限的时间内搜索超参数空间,评估不同的超参数值的组合,我使用了一些优化策略来找到超参数的近乎最优值,只用了较少的几个评估回合。我用树状结构Parzen估计方法,在200次的超参数组合的评估之后, 我找到了超参数的最优值。 notebook里面,是我在Spark里训练这个模型时,用来确定超参数的代码。

我用Databricks的社区版,花了2个小时。如果你可以有更多的时间访问Spark集群,你也可以用Spark里面的ParamGridBuilder和CrossValidator这2个类来搜索和评估超参数值。下面是实例代码。

下面,是我在Kaggle的python环境中进行模型调优,得到的大多数最优超参数值,以及Spark例子中的lambda L2正则化参数。注意,我设置了LightGBMClassifier的一个值isUnbalance=True,从而可以处理之前提到的数据集不平衡的问题。

best_params = {
           
    'bagging_fraction': 0.8,
         'bagging_freq': 1,
         'eval_metric': 'binary_error',
         'feature_fraction': 0.944714847210862,
    'lambda_l1': 1.0,
         'lambda_l2': 45.0,
         'learning_rate': 0.1,
         'loss_function': 'binary_error',
         'max_bin': 60,
         'max_depth': 58,
         'metric': 'binary_error',
         'num_iterations': 379,
         'num_leaves': 850,
    'objective': 'binary',
         'random_state': 7,
         'verbose': None
}
lgb = LightGBMClassifier(
     learningRate=0.1,
     earlyStoppingRound=100,
           featuresCol='features',
        labelCol='label',
        isUnbalance=True,
      baggingFraction=best_params["bagging_fraction"],
    baggingFreq=1,
    featureFraction=best_params["feature_fraction"],
    lambdaL1=best_params["lambda_l1"],
    # lambdaL2=best_params["lambda_l2"],
    maxBin=best_params["max_bin"],
    maxDepth=best_params["max_depth"],
    numIterations=best_params["num_iterations"],
    numLeaves=best_params["num_leaves"],
    objective="binary",
    baggingSeed=7                  
)
paramGrid = ParamGridBuilder().addGrid(
  lgb.lambdaL2, list(np.arange(1.0, 101.0, 10.0))
).build()
evaluator = BinaryClassificationEvaluator(labelCol="label",metricName="areaUnderROC")
crossValidator = CrossValidator(estimator=lgb,
                          estimatorParamMaps=paramGrid, 
                          evaluator=evaluator, 
                          numFolds=2)   
stages += [crossValidator]
pipelineModel = Pipeline(stages=stages)

下一步是将数据集分为训练集和测试集。我们会用训练集去拟合我们刚才创建的pipeline(调用Spark pipeline的fit方法),其中包含了特征装配和模型训练。然后我们用这个pipeline去变换测试集,来生成预测结果。

train, test = df.randomSplit([0.8, 0.2], seed=7)
model = pipelineModel.fit(train)
preds = model.transform(test)

一旦我们从测试数据集拿到预测结果,我们可以用它们衡量我们模型的性能。Spark提供了BinaryClassificationEvaluator,可以用来计算ROC曲线的面积。

为了计算其它相关的指标,比如精度、召回、F1分数,我们可以利用测试集的预测标签和实际标签。

binaryEvaluator = BinaryClassificationEvaluator(labelCol="label")
print ("Test Area Under ROC: " + str(binaryEvaluator.evaluate(preds, {
   binaryEvaluator.metricName: "areaUnderROC"})))
#True positives
tp = preds[(preds.label == 1) & (preds.prediction == 1)].count() 
#True negatives
tn = preds[(preds.label == 0) & (preds.prediction == 0)].count()
#False positives
fp = preds[(preds.label == 0) & (preds.prediction == 1)].count()
#Falsel negatives
fn = preds[(preds.label == 1) & (preds.prediction == 0)].count()
print ("True Positives:", tp)
print ("True Negatives:", tn)
print ("False Positives:", fp)
print ("False Negatives:", fn)
print ("Total", preds.count())  
r = float(tp)/(tp + fn)  
print ("recall", r)  
p = float(tp) / (tp + fp)
print ("precision", p)
f1 = 2 * p * r /(p + r)  
print ("f1", f1)

在这个例子里,AUC-ROC分数是0.93, F1分数是0.70. 在Kaggle notebook里,在训练之前,我还用了SMOTE来平衡数据集,结果AUC-ROC分数是0.98, F1分数是0.80。我对超参数值的组合做了200次的评估。如果我们想进一步提高模型的性能,那么下一步显然是在Spark里改进SMOTE,在拟合流水线之前先平衡一下训练集。我们还可以更深入地搜索超参数空间,通过执行更多次的超参数值组合的评估的方式。

除了在Spark上训练一个高性能的LightGBM模型,数据科学家遇到的另一个巨大挑战是管理这样一个生命周期----准备数据、选择模型、训练、调优、保存最优参数值、部署训练好的模型、通过API访问输出的预测值。MLFlow是一个开源的解决方案,可以解决这些问题。我建议感兴趣的读者去学习它。我可以写一篇关于如何如何将它整合进工作流里面。就像我上面展示的那样。

你可以参考上面的那些步骤,我放在了Github repo上。这是另一个notebook我用来进行参数调优实验。

我希望这篇文章对你开始在Apache Spark上用LightGBMClassifier实现机器学习算法带来帮助。如果在尝试过程中遇到什么问题,欢迎在评论区提问。

目录
相关文章
|
1月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
345 109
|
2月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
月之暗面发布开源模型Kimi K2,采用MoE架构,参数达1T,激活参数32B,具备强代码能力及Agent任务处理优势。在编程、工具调用、数学推理测试中表现优异。阿里云PAI-Model Gallery已支持云端部署,提供企业级方案。
188 0
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
|
3月前
|
机器学习/深度学习 人工智能 Kubernetes
Argo Workflows 加速在 Kubernetes 上构建机器学习 Pipelines
Argo Workflows 是 Kubernetes 上的工作流引擎,支持机器学习、数据处理、基础设施自动化及 CI/CD 等场景。作为 CNCF 毕业项目,其扩展性强、云原生轻量化,受到广泛采用。近期更新包括性能优化、调度策略增强、Python SDK 支持及 AI/大数据任务集成,助力企业高效构建 AI、ML、Data Pipelines。
295 0
|
2月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署gpt-oss系列模型
阿里云 PAI-Model Gallery 已同步接入 gpt-oss 系列模型,提供企业级部署方案。
|
3月前
|
机器学习/深度学习 算法 安全
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
本文探讨在敏感数据上应用差分隐私(DP)进行机器学习的挑战与实践。通过模拟DP-SGD算法,在模型训练中注入噪声以保护个人隐私。实验表明,该方法在保持71%准确率和0.79 AUC的同时,具备良好泛化能力,但也带来少数类预测精度下降的问题。研究强调差分隐私应作为模型设计的核心考量,而非事后补救,并提出在参数调优、扰动策略选择和隐私预算管理等方面的优化路径。
203 3
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
|
3月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
3月前
|
机器学习/深度学习 存储 Java
Java 大视界 -- Java 大数据机器学习模型在游戏用户行为分析与游戏平衡优化中的应用(190)
本文探讨了Java大数据与机器学习模型在游戏用户行为分析及游戏平衡优化中的应用。通过数据采集、预处理与聚类分析,开发者可深入洞察玩家行为特征,构建个性化运营策略。同时,利用回归模型优化游戏数值与付费机制,提升游戏公平性与用户体验。
|
3月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据机器学习模型在舆情分析中的情感倾向判断与话题追踪(185)
本篇文章深入探讨了Java大数据与机器学习在舆情分析中的应用,重点介绍了情感倾向判断与话题追踪的技术实现。通过实际案例,展示了如何利用Java生态工具如Hadoop、Hive、Weka和Deeplearning4j进行舆情数据处理、情感分类与趋势预测,揭示了其在企业品牌管理与政府决策中的重要价值。文章还展望了多模态融合、实时性提升及个性化服务等未来发展方向。