Python Weekly 419

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介:

文章,教程或讲座

如何用 Dropbox Security 构建用于日志系统的威胁检测和事件响应的工具

https://blogs.dropbox.com/tech/2019/10/how-dropbox-security-builds-better-tools-for-threat-detection-and-incident-response/

传统上,构建威胁检测和响应工具的最常见方法是将自动化部分和调查部分分离。根据我们的经验,这可能会导致很多崩溃。在 Dropbox,我们已经为我们的日志系统构建了一个通用的基础抽象模型,该模型可在事件响应周期的各个阶段进行 Alertbox,Covenant 和 Forerunner 检测。集成利用强大的开源工具使我们能够快速浏览数据并自动执行警报,因此我们可以专注于更复杂的威胁。

Python 3.8

https://docs.python.org/3.8/whatsnew/3.8.html

本文介绍了与 3.7 相比,Python3.8 的新增功能。

完整的 Python 库导入指南:绝对导入,相对导入和其他方法

https://www.pythonforthelab.com/blog/complete-guide-to-imports-in-python-absolute-relative-and-more/

怎样构造你的代码才能使导入结构清晰明了。

Haptik 是如何将大量代码从 Python2 迁移到 Python3 的?

https://haptik.ai/tech/how-haptik-carried-out-their-largest-python3-migration/

这篇文章描述了 Haptik 是怎么在 0 宕机的情况下完成整个 Python2 到 Python3 代码迁移的工程。

《Python 终极指南》中的分割和对抗算法

https://skerritt.blog/divide-and-conquer-algorithms/

一个很容易理解的分割和对抗算法简介。

Y 组合器的简单本质(用 Python 描述)

https://lptk.github.io/programming/2019/10/15/simple-essence-y-combinator.html

Y 组合器是 lambda 语法的核心概念,它是高级程序语言的基础。Y 组合器允许在不使用自引用函数的情况下定义一个递归。我看过多数专门介绍 Y 组合器文章是首先展示了 Y 组合器(这是相当难以理解的),然后尝试解释它是怎么运行的。我觉得这不是好方法。在本文中,我将采取另一种方法:我会先以简单的术语描述 Y 组合器的本质,或者解释如何在没有自引用的情况下进行递归,然后从中推导出通用的 Y 组合器概念。

使用 Python 的 Django 将文件上传到 AWS S3https://stackabuse.com/uploading-files-to-aws-s3-with-python-and-django/

在本文中,我们将探讨 Django 如何处理文件上传,以及如何利用云存储来扩展此功能以满足我们的需求。

使用 Pandas 的 qcut 和 cut 函数合并数据

https://pbpython.com/pandas-qcut-cut.html

Pandas 的 qcut 、cut 函数都用于将连续数据值存储到离散的存储桶或箱中。本文介绍了这两个命令之间的区别,以及如何使用这两个命令。

用 PyQtGraph 绘图

https://www.learnpyqt.com/courses/graphics-plotting/plotting-pyqtgraph/

在本教程中,我们将逐步介绍使用 PyQtGraph 创建一个绘图小部件,然后演示使用线条颜色、线条类型、轴标签、背景色以及多条线条自定义绘图。

如何使用 MongoDB 和 Docker 部署 Flask

https://www.digitalocean.com/community/tutorials/how-to-set-up-flask-with-mongodb-and-docker

在本教程中,您将使用 Docker 容器中的 Flask,Nginx 和 MongoDB 构建、打包和运行 Web 应用程序。学习在 docker-compose.yml 文件中定义整个堆栈配置,了解 Python,MongoDB 和 Nginx 的配置文件。Flask 需要一个 Web 服务器来处理 HTTP 请求,因此你还会学习使用 Gunicorn(它是 Python WSGI HTTP 服务)来处理该应用程序。而 Nginx 作为反向代理服务器,将请求转发到 Gunicorn 进行处理。

为什么我的验证集损失值低于训练集损失值?

https://www.pyimagesearch.com/2019/10/14/why-is-my-validation-loss-lower-than-my-training-loss/

在本教程中,您将学习在训练自己的深度学习神经网络模型时,验证集损失值可能低于训练集损失值的三个主要原因。

Python 属性访问和描述符协议https://amir.rachum.com/blog/2019/10/16/descriptors/

由于对 Python 的某些误解而受影响的科学论文高达数万http://www.blog.pythonlibrary.org/2019/10/13/thousands-of-scientific-papers-may-be-invalid-due-to-misunderstanding-python/

一步一步教你如何在 Django Web 应用程序中使用 Sentry 实时监控错误https://blog.hlab.tech/a-step-by-step-tutorial-on-how-to-monitor-software-errors-in-real-time-using-sentry-in-django-web-applications/

使用 Spotify API 接口分析用户音乐习惯https://nvbn.github.io/2019/10/14/playlist-analysis/

有趣的项目,工具或库

Detectron2 库分析音乐习惯

https://nvbn.github.io/2019/10/14/playlist-analysis/

Detectron2 是 Facebook AI Research 的下一代软件系统,它实现了最新的对象检测算法。Detectron2 是对 Detectron 的完全重写。

PyTorch Mobile

https://pytorch.org/mobile/home/

在 iOS 和 Android 设备上部署 PytTorch。

pyChart.js

https://github.com/IridiumIO/pyChart.js

Chart.js 是适用于 Python 的 Django 框架的交互式绘图库。

pfun

https://github.com/suned/pfun

一个利用类型模块小型库,旨在 Python 中使用静态类型检查功能。

cast-sh

https://github.com/hericlesme/cast-sh

浏览器中运行终端的实例。

CrypTen

https://github.com/facebookresearch/CrypTen

致力于隐私保护的机器学习框架。

sotabench-eval

https://github.com/paperswithcode/sotabench-eval

简单的基于公共标准的机器学习评估器。

TorchBeast

https://github.com/facebookresearch/torchbeast

一个用于分布式 RL 的 PyTorch 框架。

image_to_numpy

https://github.com/ageitgey/image_to_numpy

将图像文件加载到具有 Exif 向量支持的 numpy 数组中以防止图像扭曲!

Daudin

https://github.com/terrycojones/daudin

一个 Python 命令行 shell。

新版本

Python 3.8.0https://www.python.org/downloads/release/python-380/

Python 3.8.0 是 Python 编程语言的最新版本,相对于 3.7 版本新增了许多新功能并做了很多优化,现在稳定版已经可以下载使用。

Django 3.0 beta 1https://www.djangoproject.com/weblog/2019/oct/14/django-30-beta-1-released/

PyPy v7.2https://morepypy.blogspot.com/2019/10/pypy-v72-released.html

本文翻译自 Python Weekly 419期,有删改,不作为商业用途。

欢迎关注微.信.公.众号: 爱写Bug

相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。   相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
目录
相关文章
|
4天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
4天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
4天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!
|
6天前
|
设计模式 算法 搜索推荐
Python编程中的设计模式:优雅解决复杂问题的钥匙####
本文将探讨Python编程中几种核心设计模式的应用实例与优势,不涉及具体代码示例,而是聚焦于每种模式背后的设计理念、适用场景及其如何促进代码的可维护性和扩展性。通过理解这些设计模式,开发者可以更加高效地构建软件系统,实现代码复用,提升项目质量。 ####
|
5天前
|
机器学习/深度学习 存储 算法
探索Python编程:从基础到高级应用
【10月更文挑战第38天】本文旨在引导读者从Python的基础知识出发,逐渐深入到高级编程概念。通过简明的语言和实际代码示例,我们将一起探索这门语言的魅力和潜力,理解它如何帮助解决现实问题,并启发我们思考编程在现代社会中的作用和意义。
|
6天前
|
机器学习/深度学习 数据挖掘 开发者
Python编程入门:理解基础语法与编写第一个程序
【10月更文挑战第37天】本文旨在为初学者提供Python编程的初步了解,通过简明的语言和直观的例子,引导读者掌握Python的基础语法,并完成一个简单的程序。我们将从变量、数据类型到控制结构,逐步展开讲解,确保即使是编程新手也能轻松跟上。文章末尾附有完整代码示例,供读者参考和实践。
|
6天前
|
人工智能 数据挖掘 程序员
Python编程入门:从零到英雄
【10月更文挑战第37天】本文将引导你走进Python编程的世界,无论你是初学者还是有一定基础的开发者,都能从中受益。我们将从最基础的语法开始讲解,逐步深入到更复杂的主题,如数据结构、面向对象编程和网络编程等。通过本文的学习,你将能够编写出自己的Python程序,实现各种功能。让我们一起踏上Python编程之旅吧!
|
7天前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从基础到实战
【10月更文挑战第36天】本文将带你走进Python的世界,从基础语法出发,逐步深入到实际项目应用。我们将一起探索Python的简洁与强大,通过实例学习如何运用Python解决问题。无论你是编程新手还是希望扩展技能的老手,这篇文章都将为你提供有价值的指导和灵感。让我们一起开启Python编程之旅,用代码书写想法,创造可能。
|
9天前
|
Python
不容错过!Python中图的精妙表示与高效遍历策略,提升你的编程艺术感
本文介绍了Python中图的表示方法及遍历策略。图可通过邻接表或邻接矩阵表示,前者节省空间适合稀疏图,后者便于检查连接但占用更多空间。文章详细展示了邻接表和邻接矩阵的实现,并讲解了深度优先搜索(DFS)和广度优先搜索(BFS)的遍历方法,帮助读者掌握图的基本操作和应用技巧。
27 4