鹿班|一人设计10亿图片,这个“设计师”如何演进?

简介: 本文内容提炼:1、如何建立图片数据与用户注意力之间的连接?2、如何进行结构化规模化的图片生产?

image.png
作者| 鲍军(推开)
出品|阿里巴巴新零售淘系技术部

本文内容提炼:
1、如何建立图片数据与用户注意力之间的连接?
2、如何进行结构化规模化的图片生产?

2019 年双十一期间,鹿班面向集团电商场景输送了 10亿 规模的图片。从提升公域流量效率,到商家私域的表达赋能,随着场景的细分,分人群精细化运营的需求提出,对图片结构化生产,规模化生产在量和质上的要求不断提高。图像生成技术也在不断的演进,本篇将围绕鹿班最近一年的在生成能力上演进以及实践做展开,欢迎探讨交流。

image.png

上图是我们有过采访的在平台上卖姜茶的店铺的图片运营经验,可以看到不同场景下的商品图文,在内容和形式是极具多样性,这种多样性不同于海量商品的个性化多样性,这种多样性是对 C 端用户注意力更加精细的吸引,这种多样性是对 B 端商家运营能力的一个新命题。

那么如何满足这种多样性生产?如何建立图片数据与用户注意力之间的连接?如何对商家赋能?下面我会从图片生产的视角切入,尝试回答以上问题。

生产标准-图片结构化

在 C 端的商品分发链路上,得益于结构化的标准定义,使得商品的数据和特征可以被高效的传递收集处理,从而给予模型和算法充分的施展空间。

当尝试将商品图片的数据作为一个整体进特征提取计算时,无论是低层次的显示特征还是高维的语义隐式特征在基于深度神经网络处理后都变成了一个概率问题,但实际我们更希望把概率转换为确定性输入从而更准确的挖掘图片特征与用户行为之间的关联关系。

image.png

电商的图片生产除了最开始的拍摄外,更多的会依赖后期的图像处理软件,比如PS(photoshop)进行图文的创作编辑,根据图像处理软件的图层划分标准,我们对图片进行结构化的分层定义。给图片引入图层(layer)属性,从结构、色彩、文字(内容)三个维度对一张图片进行结构化的描述。通过结构化使得图片自身的属性特征可以被高效准确的传递收集处理,进而使得后续的生成加工成为可能。

image.png

为了标准的执行,我们面向商家设计师开发了配套的生产工具,在保持设计师工作流程不变化的前提下,将原来非结构化的单张图片转换为自描述的 DSL 结构化数据,从而在生产的源头保证了图片数据结构化的执行实施。

生产工序-流程编排

当图片有了结构化的定义后,我们将图片的生成转换为成基于人机协作的数据匹配排序问题。为什么是匹配排序?

我们积累了大量的设计数据,相比之前非结构化的设计创意,通过图片结构化我们可以将设计精确解构到每一个图层,每一个元素,每一个文字。进而沉淀了可复用的数据资产。根据用户喜好,商品属性进行图片表达的好中选优,这就转化为一个数据匹配问题。

数据匹配包含两个部分:一是由设计师创作的面向特定场景或商品表达的设计数据,我们称之为模板;二是由用户属性数据以及在浏览商品图片过程中产生的的收藏、点击、购买等用户行为数据。

对于的匹配排序有两层,首先是商品图片和模板的匹配,这层通过定义设计约束进行参数化的求解实现匹配。

比如基于模板的背景色约束商品图片主色区间,根据模板结构布局约束商品图片主体形状等。通过图像检测/识别算法在线提取商品主体的图片特征,结合离线计算的模板特征进行匹配计算。

然后是用户特征与图片特征的匹配计算,在建模时我们把数据划分成三个特征组,分别是用户特征组,商品特征组合和图片特征组,通过 embedding 变换对得到特征向量进行两两交叉预测建模,之所以采用两两分别组合而不采用三组向量联合建模的原因是考虑到对于电商场景,商品特征与用户特征之间的信号更强,如果联合建模训练会导致图片的行为的关系不能有效的被学习到,而通过两两交叉建模,可以针对性的做预测结果的加权。

问题定义清楚后我们依然要面对来自业务的复杂性和快速响应问题,为此我们定义了生产 pipline,将生产流程与生产能力分而治之。面对复杂业务需求提供生产流程编排能力,为提高响应速度提供可插拔的生产算子模型。

image.png

► 生产流程-节点编排

将图片设计生产的理念流程化,流程系统化。通过工作流引擎实现生产节点的编排管理,从而让业务方可以灵活的按需求进行生产线的定义组装,满足多场景的生产需求。

► 生产能力-可插拔算子

算子定义了统一的输入输出以及必要的context,通过对约定输入的计算处理完成效果实现。
图像类算子:图像分割,主体识别,OCR,显著性检测等。
文本类算子:短标题生成,文字效果增强等。
规则类算子:人工干预,流程控制等。

► 通过这套生成引擎,白盒化的对生成能力进行分制管理,面向二方能力的开放友好,同时满足业务集成的灵活性。目前线上共管理了10个核心场景,33个生产节点,47种算子能力,通过编排组合实现了10亿规模图片的分场景矩阵式生成。

生产工艺-图文渲染

如果说生产架构解决了宏观的生产工序问题,那么渲染就是面向微观的工艺问题。

渲染首先要解决的是效果统一,除了直接通过服务端渲染图片以外,在商家侧需要所见即所得的二次编辑能力,也就是对于同一套 DSL 数据协议,在前后端需保证渲染效果统一,为此我们构建了前后端同构的渲染方案,开发了基于 canvas 的画布引擎,在前端通过 UI 的包装提供图片可视化编辑能力;在云端通过 puppeteer 无头浏览器加载 canvas 画布引擎实现图片生产。

image.png

其次渲染需要保证对视觉设计的还原能力,尤其是文字渲染效果。前端渲染对丰富文字效果的支持由于字体库安装问题很难完成,同时后端也缺乏对文字效果的标准协议定义。而有了同构的渲染能力后,我们可以将前端协议的优势与后端字体库的优势结合,灵活的完成视觉还原。

image.png

淘宝首焦 banner 场景下,单字单样式的模板较普通模板在 AB 分桶试验下点击率平均提升约 13% 。

生产保障-性能优化

在 10亿 量级的规模下,如果没有高性能的工程保障,一切效果的提升都是零,双十一期间鹿班的平均合图 RT<5ms ,从 DSL 解析到 OSS 上行链路完成平均 RT<200ms ,在没有增加机器资源的情况下,实现了相较于去年的整体系统吞吐性能提升 50% 。整个后端引擎分为两部分:

image.png

渲染:将结构化的 layer 数据转换为独立的图片数据流。不同类型图层转换交由对应的 handler 处理。执行并行化渲染。

合图:将渲染得到的多个图层数据进行图像合并计算,经过编码压缩,图片上传,得到成图。

性能优化主要分以下几点:

  • 图层拉取并行化,本地采用 LRU-K 主动缓存,减少 tfs 拉图消耗。
  • GPU 显存主动调度管理,对显存预先分段分片,减少频繁显存的申请分配与释放消耗。
  • jpg 编码优化,通过 SIMD 进行加速,软编码的平均耗时由 70ms 下降至 20ms 。

未来展望

图片作为商品信息展示的重要载体,无论是在公域的搜索推荐还是私域的店铺详情都承担着传递商家意图与帮助消费者决策的双重作用。

对于商家:通过技术与数据赋能商家在图片生产上的持续优化,让结构化的图片能够更好的被机器理解,更高效的分发。同时增加商家的运营抓手。
对于消费者:利用更多维的图片特征获得对受众更泛化更精细的刻画能力,更好的满足甚至激发用户兴趣。

We are hiring

淘系技术部依托淘系丰富的业务形态和海量的用户,我们持续以技术驱动产品和商业创新,不断探索和衍生颠覆型互联网新技术,以更加智能、友好、普惠的科技深度重塑产业和用户体验,打造新商业。我们不断吸引用户增长、机器学习、视觉算法、音视频通信、数字媒体、移动技术、端侧智能等领域全球顶尖专业人才加入,让科技引领面向未来的商业创新和进步。
请投递简历至邮箱:ruoqi.zlj@taobao.com
了解更多职位详情:2684亿成交!每秒订单峰值54.4W!这样的团队你想加入吗?

更多技术干货,关注「淘系技术」微信公众号。
image.png

相关文章
|
自然语言处理 搜索推荐 UED
有钱景线上赛事直播开发搭建,探讨需要哪些核心功能
随着体育赛事直播平台成为用户最主要观赛,那么要打造一家充满活力的赛事直播平台,需要提供以下功能和内容。
|
存储 编解码 人工智能
自媒体影视后期数字助理--视频调色中间件设计
阿里云提供的线上AI能力在处理视觉信息方面已经有较为成熟和通用的产品,对于开始兴建媒体资源管理平台的自媒体来说,采用阿里云的AI能力、函数计算以及OSS等产品进行平台搭建可以快速实现建设与能力扩充。本文为调色中间件的开发思路、技术架构设计和开发实战中参数的设置介绍,对一些数字影像的基础概念和阿里云人工智能视觉生产的API细节进行了分析。
402 5
自媒体影视后期数字助理--视频调色中间件设计
|
数据可视化 定位技术
大屏设计师的躺平小秘诀是____?
DataV7.0 新功能「设计库」重磅上线!—— 无论你是设计师、产品经理、OR被赶鸭子上架的研发,都能快速搭建出风格统一的可视化大屏项目。
大屏设计师的躺平小秘诀是____?
如何用ChatGPT做品牌联名方案策划?
该场景对应的关键词库(15个): 品牌、个人IP、社交话题、联名策划方案、调研分析、市场影响力、资源互补性、产品体验、传播话题、视觉形象设计、合作职权分配、销售转化、曝光目标、宣发渠道、品牌形象
296 0
|
供应链 SEO
如何用ChatGPT做新品上市推广方案策划?
该场景对应的关键词库(28个): 品牌、产品信息、新品、成分、属性、功效、人群特征、客户分析、产品定位、核心卖点、推广策略、广告、公关、线上推广、线下活动、合作伙伴、资源整合、预算、执行计划、监测、评估、微调方案、价值主张、营销策略、热点话题、消费者、向往感、诱惑钩子
268 0
|
机器学习/深度学习 新零售 智能设计
鹿班黑科技降临商家私域 |千人千面+实时渲染的智能设计技术
本文内容大纲: 1、鹿班私域双11战绩。 2、鹿班有什么不同? 3、鹿班私域架构图解。
2221 0
鹿班黑科技降临商家私域 |千人千面+实时渲染的智能设计技术
|
机器学习/深度学习 人工智能 算法
AI设计师“鲁班”进化史:每秒制作8000张双11海报,没有一张雷同!
在过去,每年双11,设计师们都会开启狂加班模式:做海报、改文字、换商品、调设计、换 banner,每个设计师对接几个运营人员,富士康流水线一样的重复性工作。一年双 11 下来,完成上亿张海报。 然而,这一切正在成为过去。
5793 0
|
供应链 搜索推荐
带你读《场景方法论:如何让你的产品畅销,又给用户超爽体验》之二:场景体验与社群营销
场景在哪里,营销的镜头就应该追踪到哪里。人的生活,其实就是不同的场景切换,消费发生在特定场景中。在不同的场景中,即使同一个人,消费需求也是变化的。变化的不是人,不是产品的核心功能,而是体现情绪、欲望的产品形态。营销角度的场景研究,不是研究产品的核心功能,而是研究产品的表现形式,以及产品如何与消费者发生联系,形成体验,表现情绪,获得满足。场景体验,就是产品与消费者的连接方式。很多时候,人们喜欢的不是产品本身,而是产品所处的场景,以及场景中自己浸润的情绪。本书的问世,必将进一步推动场景师成为产品研发团队的重要成员,这一天很快就会来到!
|
机器学习/深度学习 智能设计 人工智能
揭秘天猫双11背后:AI设计师鹿班为20万客户设计600万张海报
还记得去年双11,秋裤厂商带着“五彩斑斓的黑”需求找设计师的故事吗? 现在,已经有超过20万客户把这个AI设计师鹿班带回家。 今年,鹿班除了为天猫淘宝平台提供服务之外,还通过阿里云全面为各行业客户输出AI设计能力。
3026 0
|
机器学习/深度学习 人工智能 智能设计
揭秘天猫双11背后:20万商家600万张海报,背后只有一个鹿班
今年双11,鹿班除了继续为天猫淘宝平台提供更好的设计服务之外,首次将人工智能设计能力普惠给到了所有天猫淘宝的商家进行使用。为商家提供智能设计的同时,鹿班对接了淘宝天猫的图片投放平台,所有生成的活动图片能够以最快速最方便的方式进行投放和展示,极大的提高商家的活动操作效率,帮助商家更好的完成好双11各种活动。
2911 0