实战课堂 | 让大数据分析更简单,4步教你玩转MongoDB BI Connector

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 作者:张友东(林青),阿里云数据库高级技术专家

MongoDB使用BI Connector支持BI组件直接使用SQL或ODBC数据源方式直接访问MongoDB,在早期MongoDB直接使用Postgresql FDW实现 SQL到MQL的转换,后来实现更加轻量级的mongosqld支持BI工具的连接。

e411f1b8264781f0e6fcccc1d60ecaf3c8ea61ae.png

安装 BI Connector

参考 Install BI Connector
https://docs.mongodb.com/bi-connector/master/installation/

wget https://info-mongodb-com.s3.amazonaws.com/mongodb-bi/v2/mongodb-bi-linux-x86_64-rhel70-v2.12.0.tgz

$tar xvf mongodb-bi-linux-x86_64-rhel70-v2.12.0.tgz
mongodb-bi-linux-x86_64-rhel70-v2.12.0/LICENSE
mongodb-bi-linux-x86_64-rhel70-v2.12.0/README
mongodb-bi-linux-x86_64-rhel70-v2.12.0/THIRD-PARTY-NOTICES
mongodb-bi-linux-x86_64-rhel70-v2.12.0/example-mongosqld-config.yml
mongodb-bi-linux-x86_64-rhel70-v2.12.0/bin/mongosqld
mongodb-bi-linux-x86_64-rhel70-v2.12.0/bin/mongodrdl
mongodb-bi-linux-x86_64-rhel70-v2.12.0/bin/mongotranslate
  • mongosqld 接受 SQL 查询,并将请求发到 MongoDB Server,是 BI Connector 的核心
  • mongodrdl 工具生成数据库 schema 信息,用于服务 BI SQL 查询
  • mongotranslate 工具将 SQL 查询转换为 MongoDB Aggregation Pipeline

启动 mongosqld

参考 Lauch BI Connector
https://docs.mongodb.com/bi-connector/current/launch/

mongodb-bi-linux-x86_64-rhel70-v2.12.0/bin/mongosqld --addr 127.0.0.1:3307 --mongo-uri 127.0.0.1:9555

--addr 指定 mongosqld 监听的地址
--mongo-uri 指定连接的 MongoDB Server 地址
默认情况下,mongosqld 自动会分析目标 MongoDB Server 里数据的 Schema,并缓存在内存,我们也可以直接在启动时指定 schema 影射关系。schema 也可以直接 mongodrdl 工具来生成,指定集合,可以将集合里的字段 shema 信息导出。

$./bin/mongodrdl --uri=mongodb://127.0.0.1:9555/test -c coll01
schema:
- db: test
  tables:
  - table: coll01
    collection: coll01
    pipeline: []
    columns:
    - Name: _id
      MongoType: float64
      SqlName: _id
      SqlType: float
    - Name: qty
      MongoType: float64
      SqlName: qty
      SqlType: float
    - Name: type
      MongoType: string
      SqlName: type
      SqlType: varchar

使用 MySQL 客户端连接 mongosqld

mongosqld 可直接支持 MySQL 客户端访问,还可以通过 Excel、Access、Tableau等BI工具连接
https://docs.mongodb.com/bi-connector/current/client-applications/

mysql --protocol=tcp --port=3307

mysql> use test
Database changed
mysql> show tables;
+----------------+
| Tables_in_test |
+----------------+
| coll           |
| coll01         |
| coll02         |
| inventory      |
| myCollection   |
| yourCollection |
+----------------+
6 rows in set (0.00 sec)

mysql> select * from coll01;
+------+------+--------+
| _id  | qty  | type   |
+------+------+--------+
|    1 |    5 | apple  |
|    2 |   10 | orange |
|    3 |   15 | banana |
+------+------+--------+
3 rows in set (0.00 sec)

// 对照 MongoDB 数据库里的原始数据

mongo --port
mymongo:PRIMARY> use test
switched to db test
mymongo:PRIMARY> show tables;
coll
coll01
coll02
inventory
myCollection
yourCollection
mymongo:PRIMARY> db.coll01.find()
{ "_id" : 1, "type" : "apple", "qty" : 5 }
{ "_id" : 2, "type" : "orange", "qty" : 10 }
{ "_id" : 3, "type" : "banana", "qty" : 15 }

SQL 转 Aggregation

比如要将针对 test.coll01 的 SQL 查询转换为 MongoDB Aggregation Pipeline,需要先通过 mongodrdl 分析 schema,然后使用 mongotranslate 工具来转换

// 导出分析的 shema 文件
$./bin/mongodrdl --uri=mongodb://127.0.0.1:9555/test -c coll01 > coll01.schema  

// SQL 转换为 Aggregation
$./bin/mongotranslate --query "select * from test.coll01" --schema coll01.schema
[
    {"$project": {"test_DOT_coll01_DOT__id": "$_id","test_DOT_coll01_DOT_qty": "$qty","test_DOT_coll01_DOT_type": "$type","_id": NumberInt("0")}},
]
相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。   相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
目录
相关文章
|
20天前
|
分布式计算 大数据 BI
ClickHouse与大数据生态整合:从ETL到BI报表
【10月更文挑战第27天】在这个数据驱动的时代,企业越来越依赖于数据来做出关键决策。而高效的数据处理和分析能力则是支撑这一需求的基础。作为一位数据工程师,我有幸参与到一个项目中,该项目旨在利用ClickHouse与Hadoop、Spark、Flink等大数据处理框架的整合,构建一个从数据提取(Extract)、转换(Transform)、加载(Load)到最终生成商业智能(BI)报表的全流程解决方案。以下是我在这个项目中的经验和思考。
35 1
|
22天前
|
人工智能 供应链 搜索推荐
大数据分析:解锁商业智能的秘密武器
【10月更文挑战第31天】在信息爆炸时代,大数据分析成为企业解锁商业智能的关键工具。本文探讨了大数据分析在客户洞察、风险管理、供应链优化、产品开发和决策支持等方面的应用,强调了明确分析目标、选择合适工具、培养专业人才和持续优化的重要性,并展望了未来的发展趋势。
|
6月前
|
Oracle NoSQL 关系型数据库
实时计算 Flink版产品使用合集之MongoDB CDC connector的全量快照功能可以并发读取吗
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
119 2
|
3月前
|
C# UED 开发者
WPF与性能优化:掌握这些核心技巧,让你的应用从卡顿到丝滑,彻底告别延迟,实现响应速度质的飞跃——从布局到动画全面剖析与实例演示
【8月更文挑战第31天】本文通过对比优化前后的方法,详细探讨了提升WPF应用响应速度的策略。文章首先分析了常见的性能瓶颈,如复杂的XAML布局、耗时的事件处理、不当的数据绑定及繁重的动画效果。接着,通过具体示例展示了如何简化XAML结构、使用后台线程处理事件、调整数据绑定设置以及利用DirectX优化动画,从而有效提升应用性能。通过这些优化措施,WPF应用将更加流畅,用户体验也将得到显著改善。
237 1
|
3月前
|
监控 NoSQL 大数据
【MongoDB复制集瓶颈】高频大数据写入引发的灾难,如何破局?
【8月更文挑战第24天】在MongoDB复制集中,主节点处理所有写请求,从节点通过复制保持数据一致性。但在大量高频数据插入场景中,会出现数据延迟增加、系统资源过度消耗、复制队列积压及从节点性能不足等问题,影响集群性能与稳定性。本文分析这些问题,并提出包括优化写入操作、调整写入关注级别、采用分片技术、提升从节点性能以及持续监控调优在内的解决方案,以确保MongoDB复制集高效稳定运行。
75 2
|
3月前
|
存储 NoSQL JavaScript
MongoDB存储过程实战:聚合框架、脚本、最佳实践,一文全掌握!
【8月更文挑战第24天】MongoDB是一款备受欢迎的文档型NoSQL数据库,以灵活的数据模型和强大功能著称。尽管其存储过程支持不如传统关系型数据库,本文深入探讨了MongoDB在此方面的最佳实践。包括利用聚合框架处理复杂业务逻辑、封装业务逻辑提高复用性、运用JavaScript脚本实现类似存储过程的功能以及考虑集成其他工具提升数据处理能力。通过示例代码展示如何创建订单处理集合并定义验证规则,虽未直接实现存储过程,但有效地演示了如何借助JavaScript脚本处理业务逻辑,为开发者提供更多实用指导。
71 2
|
3月前
|
NoSQL Java 测试技术
5-MongoDB实战演练
本文档详细介绍了如何使用MongoDB实现头条文章的评论系统。主要功能包括基本的增删改查API、根据文章ID查询评论、以及评论的点赞功能。文章分析了表结构设计,明确了各字段的意义,并给出了具体的字段类型。技术选型方面,文档推荐使用mongodb-driver作为Java连接MongoDB的驱动包,同时介绍了Spring Data MongoDB这一更高层次的持久层框架。此外,文档还提供了搭建文章微服务模块的具体步骤,包括项目工程的搭建、实体类的编写、索引的添加方式等,并展示了如何使用MongoTemplate实现评论点赞功能。
|
5月前
|
存储 NoSQL MongoDB
MongoDB实战面试指南:常见问题一网打尽
MongoDB实战面试指南:常见问题一网打尽
|
5月前
|
NoSQL 关系型数据库 Java
实时计算 Flink版产品使用问题之如何使用Flink MongoDB Connector连接MongoDB
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
分布式计算 DataWorks NoSQL
DataWorks操作报错合集之从MongoDB同步数据到MaxCompute(ODPS)时,出现报错,该怎么解决
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
DataWorks操作报错合集之从MongoDB同步数据到MaxCompute(ODPS)时,出现报错,该怎么解决
下一篇
无影云桌面