解密 云HBase时序引擎OpenTSDB 优化技术

简介: 逝者如斯夫,不舍昼夜。                                                       —— 孔子 时间如流水,一去不复返。自古不乏对时间流逝的感慨,而现代已经有很多技术记录流逝的过去。

逝者如斯夫,不舍昼夜。
                                                       —— 孔子

时间如流水,一去不复返。自古不乏对时间流逝的感慨,而现代已经有很多技术记录流逝的过去。我们可以拍照,可以录像,当然还可以用时序数据库!

时序数据库是专门存放随着时间推移而不断变化的数据。近些年,随着IoT等概念的流行,时序数据库成为数据库一个相对独立的领域逐渐受到重视,广泛应用于物联网、监控系统、金融、医疗和零售等多种场景。

tsdb1

过去12个月时序数据库(Time Series DBMS)热度不断增长



那么云上的用户如何构建一个存储海量数据的时序数据库呢?笔者这里推荐使用  云HBase + OpenTSDB 方案。云HBase是使用阿里多年优化过的HBase内核版本,本文不作过多介绍,详情请看 产品主页

OpenTSDB简介

OpenTSDB是一款基于HBase构建的时序数据库,它的数据存储完全交给HBase,本身没有任何数据存储。所有节点是对等的,所以部署起来其实是非常方便的。因为基于HBase,所以本身就具备了横向扩展,存储海量数据的能力。常见的部署模式有2种,一种分离部署,一种混合部署。

独立部署,即与多个业务共享一个HBase。适合时序业务较小,或者用不满HBase资源。


95c404420624dfe0aec52c074d9e923cbdbb7bcb.png



混合部署,即TSDB进程和RS在一个VM内。适合时序业务较重,需要独享HBase。


0338508948187b5e650b8fdc43a633f37efae3da.png

上述2种模式,云HBase产品都能提供支持。

OpenTSDB数据定义

tsdb4

一条时间线由 Metirc + 多个tag 唯一确定,时间线上会有源源不断的数据点(Data Point)写入,数据点由时间戳和值组成。OpenTSDB支持秒级(10位整数),毫秒级别(13位整数)两种时间精度。

举个例子,比如我们监控一个手环收集的心跳信息,那么我们可以这样定义:

Metric: "band.heartbeat"
Tags: "id"               # 只定义一个tag,就是手环的ID

那么我们通过 band.heartbeat  + id=1  就能查询到编为1的手环收集到的心跳信息。

OpenTSDB数据存储格式

数据表整体设计

tsdb5

这个设计有几个特点:

  • 1.metric和tag映射成UID,不存储实际字符串,以节约空间。
  • 2.每条时间线每小时的数据点归在一行,每列是一个数据点,这样每列只需要记录与这行起始时间偏移,以节省空间。
  • 3.每列就是一个KeyValue,如果是毫秒精度,一行最多可以有3600000个KV,这里其实会有些问题,后面会讲到。

RowKey格式

tsdb6

salt:打散同一metric不同时间线的热点
metric, tagK, tagV:实际存储的是字符串对应的UID(在tsdb-uid表中)
timestamp:每小时数据存在一行,记录的是每小时整点秒级时间戳

metric和tag

它们长度默认是3个字节,即最多只能分配 2^24=16777216 个UID。可以通过这些参数调整:

tsd.storage.uid.width.metric # metric UID长度,默认3
tsd.storage.uid.width.tagk   # tagK UID长度,默认3
tsd.storage.uid.width.tagv   # tagV UID长度 默认3
# 这3者的UID分配分别是独立的空间

注意
集群已经写过数据后就无法修改,所以最好是一开始就确定好,建议4个字节。因为使用压缩技术后,RowKey多占的几个字节可以忽略,下文会提到。

salt

salt这个东西最好根据自己HBase集群规模去配置,它有2个配置:

tsd.storage.salt.width   # 默认1,1基本够了,不用调整
tsd.storage.salt.buckets # 打散到几个bucket去,默认20

查询的时候会并发 tsd.storage.salt.buckets   个Scanner到HBase上,所以如果这个配置太大,对查询影响比较大,容易打爆HBase。这里其实是一个权衡,写入热点和查询压力。默认20其实我个人觉得有点多,配置3~8就差不多了,当然实际效果还和metric设计有关,如果在一个metric里设计了很多时间线,那就得配置很多bucket。在一个metric中设计过多时间线,会影响OpenTSDB的查询效率,所以不建议这么做。
这个参数也是设置了就不能改的,所以也是要一开始规划好。

Column格式

tsdb7

这是列名(HBase中称为qualifier)的格式,可以看到毫米级需要多出2个字节。所以如果你的采集间隔不需要精确到毫秒级别,那请一定使用秒级(10位整数)。Value只能存储整数和浮点,所以有一个bit存储Float flag。

这里大家一定会有疑问,直接通过qualifier长度是4还是2不就能判断是秒级精度的数据点,还是毫秒了么?为何还需要MS flag这样一个标记信息?阅读下面的“压缩”部分,就能知道为什么。

OpenTSDB压缩问题

OpenTSDB有个很常见并且很麻烦的问题,就是整点时候对HBase对流量冲击。下面2张图是我们一个测试集群只做写入对效果:


tsdb8            tsdb9
  OpenTSDB                                                                  HBase


可以看到会有一个数倍流量的爆发,要持续很久才能消化。 这意味着我们需要更高规格去抗这个峰值。首先我们要明白OpenTSDB为啥要做压缩?在压缩些什么东西?
前面提到过OpenTSDB一行一小时的特点,那么一行里会有很多KV。表面上看起来好像没什么问题,但是实际上对比逻辑视图和物理视图你会发现一些问题。

tsdb10

很明显,每个KV都记录了rowX,那rowX就是一个空间浪费。这个空间不仅影响成本,还影响查询效率(毕竟数据多了)。压缩做的事情就是把多个小KV合成1个大KV,减少这部分浪费。所以压缩的时候会涉及到对HBase的“读-写-删”,这就是整点HBase IO流量的来源。

那么我们有没有办法,既做压缩,同时又消除这部分HBase IO呢?

当然有!我们可以把压缩的逻辑放到HBase内部去。因为HBase本身就需要对HFile做合并工作,这时候HBase本身就会读写数据文件,这部分对HDFS的IO不会少,而我们通过hook在HBase读出数据后,替换掉要写入的数据(即压缩好的数据)。

tsdb11


tsdb12


实现上面这个功能,当然需要一定内核开发量。好消息是通过云HBase购买页面购买的时序引擎,已经自带了上述功能。不管是分离部署模式,还是混合部署模式。
这个功能的好处显而易见,消除峰值节省成本,提升集群稳定性。这样我们对一个现有的HBase集群空闲资源需求就不是那么高了,完全可以复用了。下面是使用此功能后,同样只做写入的测试集群的流量情况:

tsdb13

相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
  相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情: https://cn.aliyun.com/product/hbase   ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
7月前
|
存储 分布式计算 大数据
HBase分布式数据库关键技术与实战:面试经验与必备知识点解析
【4月更文挑战第9天】本文深入剖析了HBase的核心技术,包括数据模型、分布式架构、访问模式和一致性保证,并探讨了其实战应用,如大规模数据存储、实时数据分析及与Hadoop、Spark集成。同时,分享了面试经验,对比了HBase与其他数据库的差异,提出了应对挑战的解决方案,展望了HBase的未来趋势。通过Java API代码示例,帮助读者巩固理解。全面了解和掌握HBase,能为面试和实际工作中的大数据处理提供坚实基础。
467 3
|
7月前
|
Java Shell 分布式数据库
【大数据技术Hadoop+Spark】HBase数据模型、Shell操作、Java API示例程序讲解(附源码 超详细)
【大数据技术Hadoop+Spark】HBase数据模型、Shell操作、Java API示例程序讲解(附源码 超详细)
164 0
|
7月前
|
机器学习/深度学习 分布式计算 Hadoop
一种HBase表数据迁移方法的优化
一种HBase表数据迁移方法的优化
96 0
|
4月前
|
缓存 监控 Java
"Java垃圾回收太耗时?阿里HBase GC优化秘籍大公开,让你的应用性能飙升90%!"
【8月更文挑战第17天】阿里巴巴在HBase实践中成功将Java垃圾回收(GC)时间降低90%。通过选用G1垃圾回收器、精细调整JVM参数(如设置堆大小、目标停顿时间等)、优化代码减少内存分配(如使用对象池和缓存),并利用监控工具分析GC行为,有效缓解了高并发大数据场景下的性能瓶颈,极大提升了系统运行效率。
107 4
|
6月前
|
存储 大数据 分布式数据库
使用Apache HBase进行大数据存储:技术解析与实践
【6月更文挑战第7天】Apache HBase,一个基于HDFS的列式存储NoSQL数据库,提供高可靠、高性能的大数据存储。其特点是列式存储、可扩展至PB级数据、低延迟读写及多版本控制。适用场景包括大规模数据存储、实时分析、日志存储和推荐系统。实践包括集群环境搭建、数据模型设计、导入、查询及性能优化。HBase在大数据存储领域扮演关键角色,未来有望在更多领域发挥作用。
|
6月前
|
存储 SQL 分布式计算
技术心得记录:深入学习HBase架构原理
技术心得记录:深入学习HBase架构原理
|
6月前
|
存储 缓存 分布式计算
必知的技术知识:Hbase配置(伪分布式模式)
必知的技术知识:Hbase配置(伪分布式模式)
714 0
|
7月前
|
存储 分布式计算 Java
大数据存储技术(3)—— HBase分布式数据库
大数据存储技术(3)—— HBase分布式数据库
1900 0
|
存储 分布式计算 NoSQL
|
存储 SQL 分布式计算
大数据技术之HBase1
大数据技术之HBase
241 1