2684亿销售额背后的阿里AI技术

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 刚刚结束的双十一,天猫交易额达到 2684 亿元,较去年同比增长 25.7%。这一结果背后,云计算、人工智能等技术以及阿里巴巴工程师们的努力功不可没。在正在召开的 AICon 全球人工智能与机器学习技术大会 现场,阿里云智能计算平台事业部研究员林伟介绍了阿里基于飞天 AI 平台的人工智能技术及能力,揭开双 11 大规模交易场景下,阿里人工智能技术的神秘面纱。

演讲人:林伟
整理 | AI前线 赵钰莹

IMG_5871.JPG

人工智能生态发展趋势

大家好,我是林伟,我今天演讲的主题是《AI 突破无限可能—5 亿消费者的云上双 11》。我本人是做系统出身的,但在最近的一些会议上发现,越来越多做系统出身的人开始研究 AI。在 90 年代末的那波热潮里,我有幸在学校的人工智能实验室呆过,那时还在纠结模型效果,最后发现是自己想多了,那时做出来的东西还远远达不到可用的状态。在后来的一段时间内,AI 进入沉寂,最近几年又突然火爆,我在一些学校做交流的时候发现很多同学都在研究 AI 算法,但其实神经网络、遗传算法和模拟算法很多年前就已经出现,最近几年才爆发的最主要原因是数据和算力的提升

在这之中,云计算也起到了很大作用,只有算力更加充足,才可以拟合出更加有效的模型,这也是阿里巴巴 2009 年坚定投入云计算的重要原因。说到阿里云,其实阿里云有个非常大的客户就是阿里巴巴自己的电商业务,而阿里电商全年最重要的一个活动就是双 11。

过去几年,阿里双 11 的营业额逐渐升高,这背后更深层次的原因其实是我们实现了核心系统的 100% 上云。上云之后,我们发现 AI 离不开计算,只有具备强大的计算力才可以利用 AI 技术提高效率,双 11 就是一个很好的练兵场。在这样的规模下,如何构造系统、处理数据以及迅速挖掘数据背后的价值是我们在思考的问题。

在整个大趋势下面,我们可以看到三个因素:
一是实时化。 双 11 就一天,我们必须理解数据并及时反馈给商家,实时性非常重要,双 11 大屏背后的支撑系统就是通过 Flink 实现实时计算。单纯的销售额可能没有特别大的意义,我们需要进行实时分析以得到更细致的指标,比如用户的购买兴趣、商品类别、供销比、渠道、仓储位置和货源等,我们需要通过实时分析及时反馈给商家、快递公司等,让各方都可以明确如何调整双 11 当天的策略。今年双 11,我们每秒可以处理 25.5 亿条消息,包括买卖消息、快递请求等。

3C58EC93-6BE0-41F4-8991-7E7671E89E60.png

二是规模性。 我们不仅需要实时反馈,双 11 结束还需要精细对账给银行和商家。今年,我们仅花费一天时间(也就是 11 月 12 日)就完成了所有报表汇报,这就是通过云平台的弹性来实现的。在这么大的规模下,商家服务效率也是一个问题,原来就是靠人,用电话和小二来服务商家,现在这样的规模体系下就需要用 AI 技术来服务商家,并通过 AI 辅助快递配送,比如机器人可能会询问用户:在不在家?包裹放在哪里等问题。在大家以往的印象中,AI 离生活很远,但辅助快递配送就是一个很具体的场景,可以为用户带来更好的体验,包括淘宝首页的个性化推荐等。

如今,淘宝推荐也会有一些动态封面,这背后是我们一天分析了 2.5 亿个视频的结果,现在的淘宝上也有很多用短视频卖货宣传的,我们分析了 2.5 亿视频,最后日均商品分析达到 15000 万。我们统计了当天通过视频购买商品的人,发现平均有效时长是 120 秒。通过这种新技术可以促进新的场景。

三是 AI。 这一切的背后是数据的力量,整个双 11 都是 AI 和数据在驱动。实时性、规模性和 AI 三者相辅相成让双 11 的效率得到了大幅提高,计算处理能力也有了很大提高,这就是 2684 亿销售额背后的技术力量。

云上双 11 的 AI 能力

2.png
回归技术本身。2017 年以前,我们的系统是比较简单的,更多的任务是处理数据和生成报表。一年半以前,我们开始加入更多实时性,用实时数据反馈商业决策,这就有了 MaxCompute 的出现。

3.png
如今,整个技术后台非常复杂,我们有非常好的一些计算引擎,可以进行全域数据集成,具备统一的源数据管理、任务管理,智能数据开发和数据合成治理等能力。

4.png
说到底,AI 和计算其实是共生体,AI 的繁荣依赖于计算力的积累,所以我们需要很好的数据处理平台进行分析和提取,服务好算法工程师进行创新,比如尝试各种各样的模型、各种各样构造机器学习的方式,看看能否提高人工智能的效率和准确度。

企业如何构建云上 AI 能力

上述这些主要是 AI 的场景,接下来,我会着重介绍这些场景背后的 AI 技术,主要围绕飞天 AI 平台,上层是 PAI 和在线推理服务 EAS,然后分为 DSW 开发平台,PAI Studio 和 Auto Learning 三部分,基于训练优化引擎和推理优化引擎,解决大规模分布式数据处理问题。
5.png

此外,我们还有在线机器学习系统,可以对用户行为日志进行实时和离线计算,然后抽取特征库,生成批流统一样本,进入样本库,最终进行批流统一模型训练。为什么我们要做这个?一是因为实时性,传统的搜索是非常不敏感的,而我们是在遵循用户兴趣的变化,如果两周更新一次模型可能已经错过了几轮热销商品,我们需要通过在线机器学习的方式进行实时判断,这非常接近于深度学习。在非实时的状态下,工程师可以非常精细的做特征工程,花更多的时间理解数据,利用深度学习本身的特性捕获数据之间的关系,而不是靠专家提取,这是深度学习的好处,但这需要海量的计算才可以完成,而在线机器学习系统会把双 11 当天的日志及时传递到实时计算平台做集合,然后通过分析按照 ID 对数据进行聚合形成样本,最后根据样本做增量学习、验证、部署,只有这样才能快速更新模型,使其遵循用户或者商业的变化。

6.png
在这个过程中,我们面临的第二个挑战是模型非常大,因为要“千人千面”,因此需要一个非常大且针对稀疏场景的分布式训练。目前的开源机器学习框架还远远达不到我们的规模要求,我们需要进行大量的优化,以便在稀疏场景下训练大规模数据。如果对深度学习有了解,就应该知道深度学习可以描述非常大的细粒度图,在图上如何进行切割让图的计算和通讯可以更好地平衡是需要考虑的问题。

通过通信算子融合和基于通信代价的算子下推,我们实现了分布式图优化技术。通过高效内存分配库,比如 thread 库、Share Nothing 执行框架;利用 Spares 特性的通讯;异步训练,通讯和计算充分 overlap;容错、partial checkpoint、autoscale、动态 embedding;支持大规模梯度 optimizer 的方法实现运行框架的优化,如下图所示:

7.png
优化之后,性能上达到了七倍提升。稀疏特征规模从数十亿到数百亿,样本从数百亿到上千亿,同时还有上千worker 的分布式增量训练。

8.png
在动态封面层面,我们分析了大量视频文件,视频比图片更复杂,因为视频牵涉的环节非常多,需要做视频的预处理,提取视频帧,但不可能每一帧都进行提取,这样做的代价实在是太大了,需要提取视频的关键帧,通过图片识别和目标检测提取,这是很复杂的工作。因此,我们研发了视频平台,帮助视频分析和算法工程师解决问题,具体架构如下图所示:

9.png
在视频里面,在线服务其实也很复杂,有分解,也有合成。首先对视频进行分解,然后加以理解并提取,最后进行合成。通过视频 PAI-EAS 在线服务平台,算法工程师只需要编写简单的 Python 代码就可以通过接口调用相应服务,让他们有更多的时间进行创新。

10.png
除了上述场景,整个平台最重要的就是支持算法工程师的海量创新。五年以前,阿里的算法模型非常宝贵,写算法的人不是特别多。随着深度学习的演进,现在越来越多的算法工程师在构造模型。为了支撑这些需求,我们进行了 AI 自动化,让算法建模同学专注业务建模本身,由系统将基础设施(PAI)完成业务模型的高效、高性能运行执行。

11.png
在深度学习方面,我们分别进行了前端和后端优化。我们希望通过编译技术,系统技术服务实现图优化、任务分割、分布式调度、数据分片、模型分片,通过系统模型选择我们认为最好的方案执行,这是我们整个平台做 PAI 的理念。整个 PAI-Blade 通用推理优化框架分为如下几部分:

12.png
通过系列改进,我们也取得了一些优化成果。我们有一个非常大的集群,在集群足够大的时候,我们就可以很好地实现复用。通过资源调度和引擎的配合能够提升 GPU 集群 30% 的利用率。

13.png
此外,我们很多 AI 服务都加载在线服务框架,我们叫做 PAI EAS,这个框架是云原生的,可以更好地利用云平台本身的规模性和可扩展性,撑住双 11 当天的海量 AI 请求。因为双 11 不仅是商业数据、购买数据在暴涨,AI 请求也在暴涨,比如智能客服、菜鸟语音当天的服务量都非常大,通过利用云平台的能力,我们可以提供更好的体验。

14.png

综上,这些技术支撑了阿里巴巴的所有 BU,支持单任务 5000+ 的分布式训练,有数万台的机器,数千 AI 的服务,日均调用量可以达到上十万的规模。最后,阿里双 11 的成长和 AI 技术的成长以及数据的爆发密不可分。

嘉宾介绍:

林伟,阿里云智能计算平台事业部研究员,十五年大数据超大规模分布式系统经验,负责阿里巴巴大数据 MaxCompute 和机器学习 PAI 平台整体设计和构架,推动 MaxCompute2.0,以及 PAI2.0、PAI3.0 的演进。加入阿里之前是微软大数据 Cosmos/Scope 的核心成员,在微软研究院做分布式系统方面的研究,分别致力于分布式 NoSQL 存储系统 PacificA、分布式大规模批处理 Scope、调度系统 Apollo、流计算 StreamScope 以及 ScopeML 分布式机器学习的工作。在 ODSI、NSDI、SOSP、SIGMOD 等系统领域顶级会议发表十余篇论文。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
打赏
0
0
0
2
81905
分享
相关文章
构建可落地的企业AI Agent,背后隐藏着怎样的技术密码?
三桥君深入解析企业AI Agent技术架构,涵盖语音识别、意图理解、知识库协同、语音合成等核心模块,探讨如何实现业务闭环与高效人机交互,助力企业智能化升级。
115 6
AI + 低代码技术揭秘(十二):开发人员工具和可扩展性
VTJ平台提供开发工具与扩展框架,支持低代码应用的开发与拓展。包含CLI、插件系统及Uni-App集成,结合Vite、TypeScript和Vue优化开发流程。
130 62
AI量化交易软件开发技术逻辑
AI量化交易融合人工智能与量化分析,通过算法模型深度解析市场数据,自动生成并执行交易策略,显著提升交易效率与决策精准度。其开发涵盖目标分析、数据处理、算法设计、系统构建、测试优化、合规安全及持续迭代等多个关键环节,涉及金融、编程、大数据与AI等多领域技术。掌握这些核心技术,方能打造高效智能的量化交易系统,助力投资者实现更优收益。
16个AI Logo 设计工具大盘点:技术解析、Logo格式对比与实用推荐
本文介绍了品牌标志(Logo)的重要性,并盘点了多款免费且好用的 Logo 生成工具,分析其输出尺寸、格式及适用场景,帮助无设计基础的用户选择合适工具,高效制作满足不同用途的 Logo。
144 0
AI时代,Apipost和Apifox如何利用AI技术赋能API研发测试管理所需?
在数字化转型加速背景下,API成为企业互联互通的关键。Apipost与Apifox作为主流工具,在AI赋能方面差异显著。Apipost通过智能参数命名、接口设计自动化、测试用例生成、断言自动化等功能大幅提升研发效率和质量,尤其适合中大型企业及复杂业务场景。相比之下,Apifox功能依赖手动操作较多,适用性更偏向初创或小型项目。随着AI技术发展,Apipost展现出更强的智能化与前瞻性优势,为企业提供高效、稳定的API管理解决方案,助力其在竞争激烈的市场中实现创新突破。
63 0
让AI时代的卓越架构触手可及,阿里云技术解决方案开放免费试用
阿里云推出基于场景的解决方案免费试用活动,新老用户均可领取100点试用点,完成部署还可再领最高100点,相当于一年可获得最高200元云资源。覆盖AI、大数据、互联网应用开发等多个领域,支持热门场景如DeepSeek部署、模型微调等,助力企业和开发者快速验证方案并上云。
1977 39
让AI时代的卓越架构触手可及,阿里云技术解决方案开放免费试用
AI + 低代码技术揭秘(十):平台实施
VTJ 提供多平台部署支持,涵盖 Web、移动及跨平台环境。通过专用适配器和低代码优化,实现统一开发体验,并支持 Element Plus、Vant UI 等框架,提升开发效率与应用性能。
135 57

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等