车型识别的探索和实践

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 目标检测是计算机视觉和数字图像处理的一个热门方向,广泛应用于机器人导航、智能视频监控、工业检测、视频结构化等领域等诸多领域,通过计算机视觉减少对人力资本的消耗,具有重要的现实意义。例如在监控安防领域,我们可以通过对行人和车辆进行目标检测、识别,对目标结构化,再将结构化后的语义存储起来,实现文字和视频的映射,能够在警察办案时提供快速查询视频的能力。而在工业场景下,目标检测可以对产品进行缺陷检测,在自动化流水线上设置高清摄像头,对工业产品的缺陷特征建模后,摄像头采集产品的图片,目标检测模型就能定位产品上的缺陷,从而提高产品质检的效率,提高收益。由于深度学习的广泛运用,目标检测算法得到了较为快速的发

2.1 研究意义
(1)解决视频资源无法产生价值、浪费存储资源的问题
在园区安防、仓储监管、智慧交通领域,有大量的摄像头对某一场景进行监控,并将获得的视频存储到本地服务器,占用大量的存储资源,存储一定周期后便进行删除。所获得视频资源除了备份之外,并未发挥更多的价值。而通过视频结构化分析,一方面可以通过提取关键帧、关键元素来减少视频存储的资源消耗,另一方面,便于检索,在需要时可以更快速地找到目标。
(2)解决无法融入大数据体系的问题
监控录像作为非结构化数据,它不能直接被计算机读取和识别,因此一直无法较好地与大数据体系进行兼容,无法利用计算机来进行视频数据的分析和挖掘。而视频图像能否通过智能分析技术经济而又高效地进行结构化处理,是视频大数据在智慧城市、数字社区领域落地的关键。
(3)沉淀产品 —— 视频结构化分析
视频结构化不仅仅可以服务于雷数大数据平台,也可以作为单独的产品提供给客户,结合人体行为识别,可以针对用户的某一特定场景产生价值,如工人进入工地是否带安全帽、作业行为是否符合规范等。
(4)技术积累 —— 计算机视觉
当前人工智能在工业场景的应用中,计算机视觉技术的需求场景占据较多比例,同时在工业、物流业、智慧城市行业的项目中有多种应用,但公司目前在该领域的技术积累仍然较少,因此实践和积累相关的计算机视觉技术经验对于公司未来发展具有重要意义。
2.2 公开数据集
MIO-TCD数据集是由在一天中的不同时间和一年中不同时段获得的137,743个图像组成,这些图像来自在加拿大和美国各地部署的数千个交通摄像机。选择这些图像是为了应对广泛的目标识别挑战,并且代表了当今城市交通情景中捕获的典型视觉数据。每个移动物体已被近200人仔细识别,以便于实现各种算法的定量比较和排序。该数据集旨在提供严格的基准测试,用于训练和测试现有的或新的算法,对交通场景中移动车辆进行分类和定位。
包含的数据标签有11类:
o Articulated truck(铰链式挂车)
o Bicycle(自行车)
o Bus(公交车)
o Car(轿车)
o Motorcycle(摩托车)
o Motorized vehicle (i.e. Vehicles that are too small to be labeled into a specific category)(因目标对象在图像中太小而无法标定为特定类别的车辆)
o Non-motorized vehicle(非机动车)
o Pedestrian(行人)
o Pickup truck(皮卡车)
o Single unit truck(单箱载重汽车)
o Work van(7座的商务车或面包车)
类别样例如下:

Articulated truck Bicycle Bus Car

Motorcycle Non-motorized vehicle Pedestrian Pickup truck

Single unit truck Work van
然后我们开始对车型图片进行标注,标注的软件我们使用的是开源的LabelImg,下载地址:https://github.com/tzutalin/labelImg。点击“Open Dir”、“Change Save Dir”选择刚刚建立的images以及labels文件夹,接下来就可以使用按钮选择需要label的图片,点击“Create RectBox”激活窗口绘图工具,开始标注,如图5.2所示。

模型训练完成,如图所示,能识别出car、work_van、single_unit_truck、pedestrian这些细分特征。mAP=0.70.

2.3 结果评价
YoloV3在其官网的介绍中写道,其在COCO数据集中能达到60.6%的map,而本文使用的MIO-TCD数据集在2017年的CVPR MIO-TCD挑战赛的结果中,最高达到了77%的平均精度,因此,本文测试的YoloV3模型的mAP为70%属于正常范围。YoloV3在55个epoch的训练后期有点过拟合了,所以,模型继续训练的意义不大,只能更改YoloV3模型,提高其性能。
YOLOv3参数表如表5.2所示,方便以后再遇到类似目标检测任务时速查。
表5.2 YOLOv3训练参数
参数类型 参数值
batch_size 8
image_size 416
cfg.filters num(yolo层个数)*(classes+5)
epoch 52
mAP 0.7

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
8月前
|
文字识别 API 数据安全/隐私保护
可以使用阿里云文字识别服务中的个人证照识别功能。
可以使用阿里云文字识别服务中的个人证照识别功能。【1月更文挑战第21天】【1月更文挑战第102篇】
50 1
|
1天前
|
机器学习/深度学习 监控 安全
10分钟轻松实现人脸精准识别
本文将具体介绍如何利用云服务部署深度学习模型,快速接入人脸比对服务。
|
27天前
|
机器学习/深度学习 文字识别 自然语言处理
医疗行业化验单智能识别技术探讨:OCR与表格识别的应用
本文探讨了OCR与表格识别技术在医疗化验单处理中的应用,通过自动化数据提取和录入,显著提高了效率和准确性,降低了人工劳动强度和错误率。技术实现包括图像预处理、文字识别和表格解析等核心算法的优化,支持与医院信息管理系统集成,未来将向跨模态数据融合、多语言适配及数据安全方向发展。
|
2月前
|
机器学习/深度学习 数据采集 算法
牙龈口腔病症识别
本文介绍了利用机器学习和深度学习技术进行牙龈病症检测的方法,重点探讨了卷积神经网络(CNN)在医学影像分析中的应用。通过数据准备、模型构建、数据增强及训练评估等步骤,展示了如何实现牙龈病症的自动化诊断,旨在提高诊断效率和准确性,助力口腔健康的早期干预。
|
6月前
|
文字识别 容器
印刷文字识别使用问题之是否支持医疗检测报告识别
印刷文字识别产品,通常称为OCR(Optical Character Recognition)技术,是一种将图像中的印刷或手写文字转换为机器编码文本的过程。这项技术广泛应用于多个行业和场景中,显著提升文档处理、信息提取和数据录入的效率。以下是印刷文字识别产品的一些典型使用合集。
|
6月前
|
文字识别 开发工具
印刷文字识别使用问题之如何实现实时识别计分板内容
印刷文字识别产品,通常称为OCR(Optical Character Recognition)技术,是一种将图像中的印刷或手写文字转换为机器编码文本的过程。这项技术广泛应用于多个行业和场景中,显著提升文档处理、信息提取和数据录入的效率。以下是印刷文字识别产品的一些典型使用合集。
|
7月前
|
文字识别
印刷文字识别产品使用合集之识别不准确,该如何优化
印刷文字识别产品,通常称为OCR(Optical Character Recognition)技术,是一种将图像中的印刷或手写文字转换为机器编码文本的过程。这项技术广泛应用于多个行业和场景中,显著提升文档处理、信息提取和数据录入的效率。以下是印刷文字识别产品的一些典型使用合集。
|
8月前
|
文字识别
印刷文字识别产品使用合集之证件扫描的置信度字段,这个有什么用
印刷文字识别(Optical Character Recognition, OCR)技术能够将图片、扫描文档或 PDF 中的印刷文字转化为可编辑和可搜索的数据。这项技术广泛应用于多个领域,以提高工作效率、促进信息数字化。以下是一些印刷文字识别产品使用的典型场景合集。
|
8月前
|
机器学习/深度学习 算法 计算机视觉
ython打造智能车牌识别系统,实现快速准确的车辆识别与追踪技术
ython打造智能车牌识别系统,实现快速准确的车辆识别与追踪技术

热门文章

最新文章