蚂蚁金服金融知识图谱平台获中国人工智能领袖峰会AIC标杆应用奖

简介: 蚂蚁金服金融知识图谱平台获中国人工智能领袖峰会AIC标杆应用奖

11月15日,以“AI赋能,重构未来新生态”为主题的第四届中国人工智能领袖峰会在深圳举办,“蚂蚁金服金融知识图谱平台”获得AIC标杆应用奖。

AIC标杆应用奖3.jpg

中国人工智能领袖峰会由深圳市人工智能行业协会主办,会议探讨科技企业在人工智能加速产业变革发展的时代下,基于新技术对商业模式和运营系统进行重构,结合AI,创造新生态系统。大会举办AIC产业年度评选,旨在为表彰勇于创新的企业在人工智能行业发展中的努力及贡献,现已成为人工智能行业标杆的活动。

蚂蚁金服金融知识图谱平台,提供金融场景的知识数据生命周期管理,和一站式的知识研发和图谱服务,具备实时知识抽取、在线查询分析、AI表示学习和千亿级全图推理等服务能力,结合多维度知识评估能力指导知识构建和知识挖掘,同时创造性的提出了异构图谱融合方案并兼顾金融知识图谱的持续演化、实现了业务子图的独立迭代与跨业务知识的链接和复用。

目前蚂蚁金服金融知识图谱平台已经广泛应用在蚂蚁内部以及合作伙伴的微贷、保险智能理赔和智能理财等业务领域中。

如今,蚂蚁金服正在围绕“BASIC”核心技术能力进行布局,即 Blockchain(区块链)、AI(人工智能)、Security(安全)、IoT(物联网)、Computing(计算),并向社会进行技术开放,支持更多合作伙伴服务数亿级的用户。

相关文章
|
5天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗诊断中的应用及前景展望
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、挑战与未来发展趋势。通过分析AI技术如何助力提高诊断准确率、缩短诊断时间以及降低医疗成本,揭示了其在现代医疗体系中的重要价值。同时,文章也指出了当前AI医疗面临的数据隐私、算法透明度等挑战,并对未来的发展方向进行了展望。
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
40 1
|
8天前
|
机器学习/深度学习 人工智能 算法
AI在医疗诊断中的应用
【10月更文挑战第42天】本文将探讨人工智能(AI)在医疗诊断中的应用,包括其优势、挑战和未来发展方向。我们将通过实例来说明AI如何改变医疗行业,提高诊断的准确性和效率。
|
18天前
|
存储 XML 人工智能
深度解读AI在数字档案馆中的创新应用:高效识别与智能档案管理
基于OCR技术的纸质档案电子化方案,通过先进的AI能力平台,实现手写、打印、复古文档等多格式高效识别与智能归档。该方案大幅提升了档案管理效率,确保数据安全与隐私,为档案馆提供全面、智能化的电子化管理解决方案。
128 48
|
9天前
|
存储 人工智能 搜索推荐
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
Memoripy 是一个 Python 库,用于管理 AI 应用中的上下文感知记忆,支持短期和长期存储,兼容 OpenAI 和 Ollama API。
49 6
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
|
4天前
|
机器学习/深度学习 人工智能 算法
强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用
本文探讨了强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用,通过案例分析展示了其潜力,并讨论了面临的挑战及未来发展趋势。强化学习正为游戏AI带来新的可能性。
25 4
|
14天前
|
机器学习/深度学习 人工智能 算法
AI在医疗领域的应用与挑战
本文探讨了人工智能(AI)在医疗领域的应用,包括其在疾病诊断、治疗方案制定、患者管理等方面的优势和潜力。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题以及技术局限性等。通过对这些内容的深入分析,旨在为读者提供一个全面了解AI在医疗领域现状和未来发展的视角。
50 10
|
7天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗诊断中的应用与挑战
本文旨在揭示人工智能(AI)技术如何革新医疗诊断领域,提高疾病预测的准确性和效率。通过分析AI在图像识别、数据分析等方面的应用实例,本文将探讨AI技术带来的便利及其面临的伦理和法律问题。文章还将提供代码示例,展示如何使用AI进行疾病诊断的基本过程。
|
15天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗领域的应用与挑战
本文深入探讨了人工智能(AI)在医疗领域中的应用现状和面临的挑战。通过分析AI技术如何助力疾病诊断、治疗方案优化、患者管理等方面的创新实践,揭示了AI技术为医疗行业带来的变革潜力。同时,文章也指出了数据隐私、算法透明度、跨学科合作等关键问题,并对未来的发展趋势进行了展望。
下一篇
无影云桌面