mysql prepare原理

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: mysql prepare 原理

注:2013年的老文章

Prepare的作用 

    Prepare SQL产生的原因。首先从mysql服务器执行sql的过程开始讲起,SQL执行过程包括以下阶段 词法分析->语法分析->语义分析->执行计划优化->执行。词法分析->语法分析这两个阶段我们称之为硬解析。词法分析识别sql中每个词,语法分析解析SQL语句是否符合sql语法,并得到一棵语法树(Lex对于只是参数不同,其他均相同的sql,它们执行时间不同但硬解析的时间是相同的。而同一SQL随着查询数据的变化,多次查询执行时间可能不同,但硬解析的时间是不变的。对于sql执行时间较短,sql硬解析的时间占总执行时间的比率越高。而对于淘宝应用的绝大多数事务型SQL,查询都会走索引,执行时间都比较短。因此淘宝应用db sql硬解析占的比重较大。 

    Prepare的出现就是为了优化硬解析的问题。Prepare在服务器端的执行过程如下

 1)  Prepare 接收客户端带”?”sql, 硬解析得到语法树(stmt->Lex), 缓存在线程所在的preparestatement cache中。此cache是一个HASH MAP. Keystmt->id. 然后返回客户端stmt->id等信息。

 2)  Execute 接收客户端stmt->id和参数等信息。注意这里客户端不需要再发sql过来。服务器根据stmt->idpreparestatement cache中查找得到硬解析后的stmt, 并设置参数,就可以继续后面的优化和执行了。

    Prepareexecute阶段可以节省硬解析的时间。如果sql只执行一次,且以prepare的方式执行,那么sql执行需两次与服务器交互(Prepareexecute而以普通(非prepare)方式,只需要一次交互。这样使用prepare带来额外的网络开销,可能得不偿失。我们再来看同一sql执行多次的情况,比如以prepare方式执行10次,那么只需要一次硬解析。这时候  额外的网络开销就显得微乎其微了。因此prepare适用于频繁执行的SQL

    Prepare的另一个作用是防止sql注入,不过这个是在客户端jdbc通过转义实现的,跟服务器没有关系。 

硬解析的比重

   交易买家库 tcbyer压测时,通过perf 得到的结果。

   


   硬解析相关的函数比重都比较靠前(MYSQLparse 4.93%, lex_one_token 1.79%, lex_start 1.12%)总共接近8%。因此,服务器使用prepare是可以带来较多的性能提升的。

jdbc与prepare 

  jdbc服务器端的参数:

   useServerPrepStmts:默认为false. 是否使用服务器prepare开关

  jdbc客户端参数:

   cachePrepStmts:默认false.是否缓存prepareStatement对象。每个连接都有一个缓存,是以sql为唯一标识的LRU cache. 同一连接下,不同stmt可以不用重新创建prepareStatement对象。

   prepStmtCacheSize:LRU cacheprepareStatement对象的个数。一般设置为最常用sql的个数。

   prepStmtCacheSqlLimit:prepareStatement对象的大小。超出大小不缓存。

  Jdbcprepare的处理过程: 

  useServerPrepStmts=true时Jdbc对prepare的处理

   1)  创建PreparedStatement对象,向服务器发送COM_PREPARE命令,并传送带问号的sql. 服务器返回jdbc stmt->id等信息

   2)  向服务器发送COM_EXECUTE命令,并传送参数信息。

  useServerPrepStmts=false时Jdbc对prepare的处理

   1)  创建PreparedStatement对象,此时不会和服务器交互。

   2) 根据参数和PreparedStatement对象拼接完整的SQL,向服务器发送QUERY命令

   我们再看参数cachePrepStmts打开时在useServerPrepStmts为true或false时,均缓存PreparedStatement对象。只不过useServerPrepStmts为的true缓存PreparedStatement对象包含服务器的stmt->id等信息,也就是说如果重用了PreparedStatement对象,那么就省去了和服务器通讯(COM_PREPARE命令)的开销。而useServerPrepStmts=false是,开启cachePrepStmts缓存PreparedStatement对象只是简单的sql解析信息,因此此时开启cachePrepStmts意义不是太大。

我们来开看一段java代码

1
2
3
4
5
6
7
8
9
10
11
             Connection con =  null ;
             PreparedStatement ps =  null ;
             String sql =  "select * from user where id=?" ;
             ps = con.prepareStatement(sql);            
             ps.setInt( 1 1 );‍‍            
             ps.executeQuery();            
             ps.close();            
             ps = con.prepareStatement(sql);            
             ps.setInt( 1 3 );            
             ps.executeQuery();            
             ps.close();

   这段代码在同一会话中两次prepare执行同一语句,并且之间有ps.close();

    useServerPrepStmts=false时,服务器会两次硬解析同一SQL

    useServerPrepStmts=true, cachePrepStmts=false时服务器仍然会两次硬解析同一SQL

    useServerPrepStmts=true, cachePrepStmts=true时服务器只会硬解析一次SQL

 

    如果两次prepare之间没有ps.close();那么cachePrepStmts=truecachePrepStmts=false也只需一次硬解析. 

    因此,客户端对同一sql,频繁分配和释放PreparedStatement对象的情况下,开启cachePrepStmts参数是很有必要的。

测试

   1)做了一个简单的测试,主要测试prepare的效果和useServerPrepStmts参数的影响.

 

1
<span style= "font-family: 宋体, SimSun; font-size: 14px;" >        cnt = 5000;<br>        // no prepare <br>        String sql =  "select biz_order_id,out_order_id,seller_nick,buyer_nick,seller_id,buyer_id,auction_id,auction_title,auction_price,buy_amount,biz_type,sub_biz_type,fail_reason,pay_status,logistics_status,out_trade_status,snap_path,gmt_create,status,ifnull(buyer_rate_status, 4) buyer_rate_status from tc_biz_order_0030 where "  +<br>         "parent_id = 594314511722841 or parent_id =547667559932641;" ;<br><br>         begin  = new  Date ();<br>        System. out .println( "begin:"  + df.format( begin ));<br>        <br>        stmt = con.createStatement();<br>         for  ( int  i = 0; i < cnt; i++)<br>        {         <br>            stmt.executeQuery(sql);<br>        } <br>               <br>         end  = new  Date ();<br>        System. out .println( "end:"  + df.format( end ));<br>        <br>        long  temp  end .getTime() -  begin .getTime();<br>        System. out .println( "no perpare interval:"  temp );<br>        <br>        <br>        // test  prepare        <br>        sql =  "select biz_order_id,out_order_id,seller_nick,buyer_nick,seller_id,buyer_id,auction_id,auction_title,auction_price,buy_amount,biz_type,sub_biz_type,fail_reason,pay_status,logistics_status,out_trade_status,snap_path,gmt_create,status,ifnull(buyer_rate_status, 4) buyer_rate_status from tc_biz_order_0030 where "  +<br>                 "parent_id = 594314511722841 or parent_id =?;" ;<br>        ps = con.prepareStatement(sql);<br>        BigInteger param = new BigInteger( "547667559932641" );<br>        <br>         begin  = new  Date ();<br>        System. out .println( "begin:"  + df.format( begin ));<br>        <br>         for  ( int  i = 0; i < cnt; i++)<br>        {<br>         ps.setObject(1, param);<br>            ps.executeQuery(); <br>        } <br>   <br>         end  = new  Date ();<br>        System. out .println( "end:"  + df.format( end ));<br>        <br>         temp  end .getTime() -  begin .getTime();<br>        System. out .println( "prepare interval:"  temp );<br></span>


经多次采样测试结果如下:


非prepare和prepare时间比
useServerPrepStmts=true 0.93
useServerPrepStmts=false 1.01


结论:

useServerPrepStmts=true时,prepare提升7%;

useServerPrepStmts=false时,prepare与非prepare性能相当。 


如果将语句简化为select * from tc_biz_order_0030 where parent_id =?。那么测试的结论useServerPrepStmts=true时,prepare仅提升2%;sql越简单硬解析的时间就越少,prepare的提升就越少。


注意:这个测试是在单个连接,单条sql的理想情况下进行的,线上会出现多连接多sql,还有sql执行频率,sql的复杂程度等不同,因此prepare的提升效果会随具体环境而变化。


2)prepare 前后的perf top 对比


   以下为非prepare

     6.46%   mysqld  mysqld              [.] _Z10MYSQLparsePv

     3.74%   mysqld  libc-2.12.so        [.] __memcpy_ssse3

     2.50%   mysqld  mysqld              [.] my_hash_sort_utf8

     2.15%   mysqld  mysqld              [.] cmp_dtuple_rec_with_match

     2.05%   mysqld  mysqld              [.] _ZL13lex_one_tokenPvS_

     1.46%   mysqld  mysqld              [.] buf_page_get_gen

     1.34%   mysqld  mysqld              [.] page_cur_search_with_match

     1.31%   mysqld  mysqld              [.] _ZL14build_templateP19row_prebuilt_structP3THDP5TABLEj

     1.24%   mysqld  mysqld              [.] rec_init_offsets

     1.11%   mysqld  libjemalloc.so.1    [.] free

     1.09%   mysqld  mysqld              [.] rec_get_offsets_func

     1.01%   mysqld  libjemalloc.so.1    [.] malloc

     0.96%   mysqld  libc-2.12.so        [.] __strlen_sse42

     0.93%   mysqld  mysqld              [.] _ZN4JOIN8optimizeEv

     0.91%   mysqld  mysqld              [.] _ZL15get_hash_symbolPKcjb

     0.88%   mysqld  mysqld              [.] row_search_for_mysql

     0.86%   mysqld  [kernel.kallsyms]   [k] tcp_recvmsg

     

 以下为perpare

     3.46%   mysqld  libc-2.12.so        [.] __memcpy_ssse3

     2.32%   mysqld  mysqld              [.] cmp_dtuple_rec_with_match

     2.14%   mysqld  mysqld              [.] _ZL14build_templateP19row_prebuilt_structP3THDP5TABLEj

     1.96%   mysqld  mysqld              [.] buf_page_get_gen

     1.66%   mysqld  mysqld              [.] page_cur_search_with_match

     1.54%   mysqld  mysqld              [.] row_search_for_mysql

     1.44%   mysqld  mysqld              [.] btr_cur_search_to_nth_level

     1.41%   mysqld  libjemalloc.so.1    [.] free

     1.35%   mysqld  mysqld              [.] rec_init_offsets

     1.32%   mysqld  [kernel.kallsyms]   [k] kfree

     1.14%   mysqld  libjemalloc.so.1    [.] malloc

     1.08%   mysqld  [kernel.kallsyms]   [k] fget_light

     1.05%   mysqld  mysqld              [.] rec_get_offsets_func

     0.99%   mysqld  mysqld              [.] _ZN8Protocol24send_result_set_metadataEP4ListI4ItemEj

     0.90%   mysqld  mysqld              [.] sync_array_print_long_waits

     0.87%   mysqld  mysqld              [.] page_rec_get_n_recs_before

     0.81%   mysqld  mysqld              [.] _ZN4JOIN8optimizeEv

     0.81%   mysqld  libc-2.12.so        [.] __strlen_sse42

     0.78%   mysqld  mysqld              [.] _ZL20make_join_statisticsP4JOINP10TABLE_LISTP4ItemP16st_dynamic_array

     0.72%   mysqld  [kernel.kallsyms]   [k] tcp_recvmsg

     0.63%   mysqld  libpthread-2.12.so  [.] __pthread_getspecific_internal

     0.63%   mysqld  [kernel.kallsyms]   [k] sk_run_filter

     0.60%   mysqld  mysqld              [.] _Z19find_field_in_tableP3THDP5TABLEPKcjbPj

     0.60%   mysqld  mysqld              [.] page_check_dir

     0.57%   mysqld  mysqld              [.] _Z16dispatch_command19enum_server_commandP3THDP

   对比可以发现 MYSQLparse lex_one_token在prepare时已优化掉了。

思考

   1 开启cachePrepStmts的问题,前面谈到每个连接都有一个缓存,是以sql为唯一标识的LRU cache. 在分表较多,大连接的情况下,可能会个应用服务器带来内存问题。这里有个前提是ibatis是默认使用prepare的。 mybatis中,标签statementType可以指定某个sql是否是使用prepare.

statementType Any one of STATEMENT, PREPARED or CALLABLE. This causes MyBatis to use Statement, PreparedStatement orCallableStatement respectively. Default: PREPARED.

这样可以精确控制只对频率较高的sql使用prepare,从而控制使用prepare sql的个数,减少内存消耗。遗憾的是目前集团貌似大多使用的是ibatis 2.0版本,不支持statementType

标签。

    服务器端prepare cache是一个HASH MAP. Keystmt->id,同时也是每个连接都维护一个。因此也有可能出现内存问题,待实际测试。如有必要需改造成Keysql的全局cache,这样不同连接的相同prepare sql可以共享。 

    3 oracle prepare与mysql prepare的区别:

      mysql与oracle有一个重大区别是mysql没有oracle那样的执行计划缓存。前面我们讲到SQL执行过程包括以下阶段 词法分析->语法分析->语义分析->执行计划优化->执行。oracle的prepare实际上包括以下阶段:词法分析->语法分析->语义分析->执行计划优化,也就是说oracle的prepare做了更多的事情,execute只需要执行即可。因此,oracle的prepare比mysql更高效。


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
目录
相关文章
|
6月前
|
存储 SQL 关系型数据库
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
|
10月前
|
自然语言处理 搜索推荐 关系型数据库
MySQL实现文档全文搜索,分词匹配多段落重排展示,知识库搜索原理分享
本文介绍了在文档管理系统中实现高效全文搜索的方案。为解决原有ES搜索引擎私有化部署复杂、运维成本高的问题,我们转而使用MySQL实现搜索功能。通过对用户输入预处理、数据库模糊匹配、结果分段与关键字标红等步骤,实现了精准且高效的搜索效果。目前方案适用于中小企业,未来将根据需求优化并可能重新引入专业搜索引擎以提升性能。
468 5
|
6月前
|
SQL 关系型数据库 MySQL
MySQL group by 底层原理详解。group by 执行 慢 原因深度分析。(图解+秒懂+史上最全)
MySQL group by 底层原理详解。group by 执行 慢 原因深度分析。(图解+秒懂+史上最全)
MySQL group by 底层原理详解。group by 执行 慢 原因深度分析。(图解+秒懂+史上最全)
|
存储 SQL 关系型数据库
MySQL进阶突击系列(03) MySQL架构原理solo九魂17环连问 | 给大厂面试官的一封信
本文介绍了MySQL架构原理、存储引擎和索引的相关知识点,涵盖查询和更新SQL的执行过程、MySQL各组件的作用、存储引擎的类型及特性、索引的建立和使用原则,以及二叉树、平衡二叉树和B树的区别。通过这些内容,帮助读者深入了解MySQL的工作机制,提高数据库管理和优化能力。
|
11月前
|
关系型数据库 MySQL 数据库
RDS用多了,你还知道MySQL主从复制底层原理和实现方案吗?
随着数据量增长和业务扩展,单个数据库难以满足需求,需调整为集群模式以实现负载均衡和读写分离。MySQL主从复制是常见的高可用架构,通过binlog日志同步数据,确保主从数据一致性。本文详细介绍MySQL主从复制原理及配置步骤,包括一主二从集群的搭建过程,帮助读者实现稳定可靠的数据库高可用架构。
630 9
RDS用多了,你还知道MySQL主从复制底层原理和实现方案吗?
|
11月前
|
SQL 存储 关系型数据库
MySQL主从复制 —— 作用、原理、数据一致性,异步复制、半同步复制、组复制
MySQL主从复制 作用、原理—主库线程、I/O线程、SQL线程;主从同步要求,主从延迟原因及解决方案;数据一致性,异步复制、半同步复制、组复制
1243 11
|
SQL 关系型数据库 MySQL
MySQL事务日志-Undo Log工作原理分析
事务的持久性是交由Redo Log来保证,原子性则是交由Undo Log来保证。如果事务中的SQL执行到一半出现错误,需要把前面已经执行过的SQL撤销以达到原子性的目的,这个过程也叫做"回滚",所以Undo Log也叫回滚日志。
649 7
MySQL事务日志-Undo Log工作原理分析
|
11月前
|
存储 缓存 关系型数据库
MySQL进阶突击系列(08)年少不知BufferPool核心原理 | 大哥送来三条大金链子LRU、Flush、Free
本文深入探讨了MySQL中InnoDB存储引擎的buffer pool机制,包括其内存管理、数据页加载与淘汰策略。Buffer pool作为高并发读写的缓存池,默认大小为128MB,通过free链表、flush链表和LRU链表管理数据页的存取与淘汰。其中,改进型LRU链表采用冷热分离设计,确保预读机制不会影响缓存公平性。文章还介绍了缓存数据页的刷盘机制及参数配置,帮助读者理解buffer pool的运行原理,优化MySQL性能。
|
SQL 关系型数据库 MySQL
MySQL派生表合并优化的原理和实现
通过本文的详细介绍,希望能帮助您理解和实现MySQL中派生表合并优化,提高数据库查询性能。
314 16
|
SQL 关系型数据库 MySQL
MySQL派生表合并优化的原理和实现
通过本文的详细介绍,希望能帮助您理解和实现MySQL中派生表合并优化,提高数据库查询性能。
169 7

相关产品

  • 云数据库 RDS MySQL 版
  • 推荐镜像

    更多