大数据workshop:《云数据·大计算:海量日志数据分析与应用》之《社交数据分析:好友推荐》篇

简介: 本手册为云栖大会Workshop《云计算·大数据:海量日志数据分析与应用》的《社交数据分析:好友推荐》篇而准备。主要阐述如何在大数据开发套件中使用MR实现好友推荐。

大数据workshop:《云数据·大计算:海量日志数据分析与应用》之《社交数据分析:好友推荐》篇

实验背景介绍

了解更多2017云栖大会·成都峰会 TechInsight & Workshop.

本手册为云栖大会Workshop《云计算·大数据:海量日志数据分析与应用》的《社交数据分析:好友推荐》篇而准备。主要阐述如何在大数据开发套件中使用MR实现好友推荐。

MapReduce应用场景

  • 搜索:网页爬取、倒排索引、PageRank;
  • Web访问日志分析:分析和挖掘用户在web上的访问、购物行为特征,实现个性化推荐;
  • 文本统计分析:比如莫言小说的WordCount、词频TFIDF分析;学术论文、专利文献的引用分析和统计;
  • 海量数据挖掘:非结构化数据、时空数据、图像数据的挖掘;
  • 机器学习:监督学习、无监督学习、分类算法如决策树、SVM等;
  • 自然语言处理:基于大数据的训练和预测;基于语料库构建单词同现矩阵,频繁项集数据挖掘、重复文档检测等;
  • 广告推荐:用户点击(CTR)和购买行为(CVR)预测。

涉及大数据产品

好友推荐MapReduce算法分析

现在,社交网络已经成为影响力巨大的信息平台,社交网站中,用户可以通过“你可能感兴趣的人”途径增加交友方式。“你可能感兴趣的人”也称作“好友推荐”, 它主要是通过查找两个非好友之间的共同好友情况来实现的。下面,将通过一个例子,简单介绍通过MapReduce的方式实现好友推荐功能。

例如:A,B,C,D,E五个人的好友关系如下图,其中实线表示互为好友关系。那么,如何获取两个不是好友的两个人之间的好友数?并以此为参考,进行对用户推荐陌生人。

1

首先,将好友关系分配到两个Map进行处理,其中每个Map包含3条好友关系。对每一条好友关系进行拆分,若Key中的两个人为朋友,则记录value值为0,否则value值为1。将拆分的结果进行排序,其中(A B)和(B A)作为同一个key(A B)。

2

然后,将分别对两个Map处理的记录进行初步合并,若两个记录的Key值相同且每条记录的Value都不为0,则Value值加1。注意:在Combine阶段,必须保留Value为0的记录,否则,在Reduce阶段,获取的结果会出错。

3

最后,通过Reduce方式,合并两个Map处理的Combine结果。首先,若两个记录的Key值相同且每条记录的Value都不为0,则Value值加1;然后,将Value值为0的记录删除;最后,获取不为好友的两个用户之间的公共好友数:Key为两个不为好友的用户,Value是两个不是好友的用户之间的共同好友数。社交网站或者APP可以根据这个数值对不是好友的两个用户进行推荐。

4

实验详情

下载实验数据

点击下载实验数据:friends_in_data.csv和MR jar包:friends_mr.jar至本地。

进入大数据开发套件

确保阿里云账号处于登录状态。

项目列表

  • step2:点击已经创建的项目空间名称,进入大数据开发套件。

点击进入项目

进入大数据开发套件

新建数据表

继上实验《数据采集:日志数据上传》和《数据加工:用户画像》中已经新建脚本文件,可以直接切换至脚本开发tab下,双击打开create_table_ddl脚本文件。若无新建脚本文件可通过如下详细步骤进行创建脚本文件。

建表

附建表SQL

drop table if exists dual;--创建系统dual
create table dual(id bigint);--如project中不存在此伪表,则需创建并初始化数据
insert overwrite table dual select count(*)from dual;--向系统伪表初始化数据
---创建好友推荐MR的数据输入表.其中uid表示某个用户;friends表示uid用户的好友
create table friends_in (uid string, friends string);
---创建好友推荐MR的数据输出表.其中userA表示某个用户;userB表示不是userA的用户,cnt表示userA和userB之间的共同好友数。
create table friends_out (userA string, userB string, cnt bigint);

导入本地数据

  • step1:完成输入和输出表的创建后,点击顶部功能栏中的导入,导入本地数据。然后,打开本地保存的文件friends_in_data.csv(点击本小节顶部的附件名“friends_in_data.csv” ,下载本次实验的测试数据)。

选择导入本地数据

  • step2:所有配置均设为默认,并查看导入的数据。完成后,点击下一步

注意:在真实的工作环境中,数据必须以txt或csv的文件类型导入。

本地数据导入框

  • step3:在本地数据导入的页面的“导入至表”中,输入friends_in,也就是将本次实验的测试数据,导入到好友推荐的输入表friends_in中。确定目标字段源字段匹配。完成后点击导入。开始执行导入操作。由于数据量较大,请等待1-2分钟。

本地数据导入2

  • step4:完成表数据导入后,页面会自动退出导入界面。点击页面左侧栏中的表查询tab页,双击打开表friends_in。然后,点击数据浏览,就可以快速查看friends_in表中存
    储的数据。若显示的数据与文件 friends_in_data.csv数据相同,则证明本次实验的测试数据导入成功。

数据预览

添加MR资源

  • step1:点击最左侧栏中的资源管理,然后在左侧栏的资源管理列表的顶部,点击最右侧的第一个图标上传资源,开始配置上传资源信息。

资源管理

  • step2:在弹出的对话框中,配置如下所示的上传资源信息。完成后,点击提交,将本地的好友推荐Jar包上传到Data IDE环境中。

资源上传

在页面左侧的资源管理下,可以查看到上传成功的Jar包friends_mr.jar

确认资源

测试并验证好友推荐

  • step1:点击页面顶层栏中的新建新建任务,开始创建本次实验的MR任务。

新建任务

  • step2:在弹出的对话框中,选择新建任务的任务类型工作流任务,并输入任务名称为friends_odps_mr。默认“调度类型”为“同期调度”。完成后,点击“创建”。

配置任务

  • step3:此时,右侧页面变为friends_odps_mr的画布,拖右侧节点组件中的OPEN MR到右侧画布的空白位置。

新建mr节点

在画布上,可以查看到一个名称为friends_mr的OPEN MR任务节点。双击,进入MR任务的编辑页面。

MR节点

  • step4:输入如下配置信息,完成后,点击顶层栏中的保存图标,保存MR任务的配置信息。点击运行,运行本次配置的OPEN MR任务。

配置MR

配置项目说明:

  • MRJar包:点击文本框,并选择friends_mr.jar
  • 资源:默认设置为friends_mr.jar
  • 输入表:输入friends_in
  • mapper:输入friends_mr_odps.FriendsMapper,此为Jar包中Mapper的class全名
  • reducer:输入friends_mr_odps.FriendsReducer,此为Jar包中Reducer的class全名
  • combiner:输入friends_mr_odps.FriendsCombiner,此为Jar包中Combiner的class全名
  • 输出表:输入friends_out
  • 输出Key:输入userA:String, userB:String
  • 输出Val:输入cnt:Bigint
  • step5:在底部的日志中,可以查看到运行状态和运行结果。大约40s左右,页面显示“Current task status:FINISH”,表示已运行结束。

运行成功

  • step6:在上述建表脚本文件中输入如下的SQL命令,并点击运行。查询共同好友超过2个的数据信息。

数据预览SQL

SELECT * FROM friends_out WHERE cnt>2 order by cnt desc limit 100;

恭喜大家完成《云数据·大计算:海量日志数据分析与应用》的Workshop,基于此相信大家也掌握了MaxCompute、大数据开发套件、Quick BI的基本操作,也能够完成自己公司或个人的一些真实需求。关于更多的详细内容,可以点击了解更多阿里云数加

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
4月前
|
SQL 人工智能 监控
SLS Copilot 实践:基于 SLS 灵活构建 LLM 应用的数据基础设施
本文将分享我们在构建 SLS SQL Copilot 过程中的工程实践,展示如何基于阿里云 SLS 打造一套完整的 LLM 应用数据基础设施。
839 66
|
6月前
|
存储 关系型数据库 数据库
附部署代码|云数据库RDS 全托管 Supabase服务:小白轻松搞定开发AI应用
本文通过一个 Agentic RAG 应用的完整构建流程,展示了如何借助 RDS Supabase 快速搭建具备知识处理与智能决策能力的 AI 应用,展示从数据准备到应用部署的全流程,相较于传统开发模式效率大幅提升。
附部署代码|云数据库RDS 全托管 Supabase服务:小白轻松搞定开发AI应用
|
8月前
|
人工智能 自然语言处理 数据挖掘
云上玩转Qwen3系列之三:PAI-LangStudio x Hologres构建ChatBI数据分析Agent应用
PAI-LangStudio 和 Qwen3 构建基于 MCP 协议的 Hologres ChatBI 智能 Agent 应用,通过将 Agent、MCP Server 等技术和阿里最新的推理模型 Qwen3 编排在一个应用流中,为大模型提供了 MCP+OLAP 的智能数据分析能力,使用自然语言即可实现 OLAP 数据分析的查询效果,减少了幻觉。开发者可以基于该模板进行灵活扩展和二次开发,以满足特定场景的需求。
|
6月前
|
机器学习/深度学习 Java 大数据
Java 大视界 -- Java 大数据在智能政务公共资源交易数据分析与监管中的应用(202)
本篇文章深入探讨了 Java 大数据在智能政务公共资源交易监管中的创新应用。通过构建高效的数据采集、智能分析与可视化决策系统,Java 大数据技术成功破解了传统监管中的数据孤岛、效率低下和监管滞后等难题,为公共资源交易打造了“智慧卫士”,助力政务监管迈向智能化、精准化新时代。
|
7月前
|
监控 安全 Linux
AWK在网络安全中的高效应用:从日志分析到威胁狩猎
本文深入探讨AWK在网络安全中的高效应用,涵盖日志分析、威胁狩猎及应急响应等场景。通过实战技巧,助力安全工程师将日志分析效率提升3倍以上,构建轻量级监控方案。文章详解AWK核心语法与网络安全专用技巧,如时间范围分析、多条件过滤和数据脱敏,并提供性能优化与工具集成方案。掌握AWK,让安全工作事半功倍!
247 0
|
9月前
|
机器学习/深度学习 数据可视化 算法
销售易CRM:移动端应用与数据分析双轮驱动企业增长
销售易CRM移动端应用助力企业随时随地掌控业务全局。销售人员可实时访问客户信息、更新进展,离线模式确保网络不佳时工作不中断。实时协作功能提升团队沟通效率,移动审批加速业务流程。强大的数据分析与可视化工具提供深度洞察,支持前瞻性决策。客户行为分析精准定位需求,优化营销策略。某中型制造企业引入后,业绩提升30%,客户满意度提高25%。
|
10月前
|
存储 监控 算法
基于 PHP 语言的滑动窗口频率统计算法在公司局域网监控电脑日志分析中的应用研究
在当代企业网络架构中,公司局域网监控电脑系统需实时处理海量终端设备产生的连接日志。每台设备平均每分钟生成 3 至 5 条网络请求记录,这对监控系统的数据处理能力提出了极高要求。传统关系型数据库在应对这种高频写入场景时,性能往往难以令人满意。故而,引入特定的内存数据结构与优化算法成为必然选择。
276 3
|
11月前
|
运维 应用服务中间件 nginx
docker运维查看指定应用log文件位置和名称
通过本文的方法,您可以更高效地管理和查看Docker容器中的日志文件,确保应用运行状态可控和可监测。
1653 28
|
存储 数据采集 数据可视化
Pandas数据应用:医疗数据分析
Pandas是Python中强大的数据操作和分析库,广泛应用于医疗数据分析。本文介绍了使用Pandas进行医疗数据分析的常见问题及解决方案,涵盖数据导入、预处理、清洗、转换、可视化等方面。通过解决文件路径错误、编码不匹配、缺失值处理、异常值识别、分类变量编码等问题,结合Matplotlib等工具实现数据可视化,并提供了解决常见报错的方法。掌握这些技巧可以提高医疗数据分析的效率和准确性。
351 22

相关产品

  • 云原生大数据计算服务 MaxCompute