大数据workshop:《云数据·大计算:海量日志数据分析与应用》之《数据加工:用户画像》篇

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 本手册为阿里云MVP《云计算·大数据:海量日志数据分析与应用》的《数据加工:用户画像》篇而准备。主要阐述在使用大数据开发套件过程中如何将已经采集至MaxCompute上的日志数据进行加工并进行用户画像,学员可以根据本实验手册,去学习如何创建SQL任务、如何处理原始日志数据。

阿里云MVP Meetup:《云数据·大计算:海量日志数据分析与应用》之《数据加工:用户画像》篇

实验背景介绍

本手册为阿里云MVP Meetup Workshop《云计算·大数据:海量日志数据分析与应用》的《数据加工:用户画像》篇而准备。主要阐述在使用大数据开发套件过程中如何将已经采集至MaxCompute上的日志数据进行加工并进行用户画像,学员可以根据本实验手册,去学习如何创建SQL任务、如何处理原始日志数据。

实验涉及大数据产品

实验环境准备

必备条件:

  • 开通大数据计算服务MaxCompute
  • 创建大数据开发套件项目空间

进入大数据开发套件

确保阿里云账号处于登录状态。

项目列表

  • step2:点击已经创建的项目空间名称,进入大数据开发套件。

点击进入项目

进入大数据开发套件

新建数据表

若在实验《数据采集:日志数据上传》中已经新建脚本文件,可以直接切换至脚本开发tab下,双击打开create_table_ddl脚本文件。若无新建脚本文件可通过如下详细步骤进行创建脚本文件。

1.新建ods_log_info_d表

  • step1:点击数据开发,进入数据开发首页中点击新建脚本

新建脚本

  • step2:配置文件名称为create_table_ddl,类型选择为ODPS SQL,点击提交

配置脚本

  • step3:编写DDL创建表语句。
    编写DDL

DDL建表语句如下:

CREATE TABLE ods_log_info_d (
    ip STRING COMMENT 'ip地址',
    uid STRING COMMENT '用户ID',
    time STRING COMMENT '时间yyyymmddhh:mi:ss',
    status STRING COMMENT '服务器返回状态码',
    bytes STRING COMMENT '返回给客户端的字节数',
    region STRING COMMENT '地域,根据ip得到',
    method STRING COMMENT 'http请求类型',
    url STRING COMMENT 'url',
    protocol STRING COMMENT 'http协议版本号',
    referer STRING COMMENT '来源url',
    device STRING COMMENT '终端类型 ',
    identity STRING COMMENT '访问类型 crawler feed user unknown'
)
PARTITIONED BY (
    dt STRING
);
AI 代码解读
  • step4:选择需要执行的SQL语句,点击运行,直至日志信息返回成功表示表创建成功。

运行DDL

  • step5:可以使用desc语法来确认创建表是否成功。

DESC

  • step6:点击保存,保存编写的SQL建表语句。

保存DDL

2.新建dw_user_info_all_d表

创建表方法同上,本小节附建表语句:

---创建dw_user_info_all_d表
drop table if exists dw_user_info_all_d;

CREATE TABLE dw_user_info_all_d (
    uid STRING COMMENT '用户ID',
    gender STRING COMMENT '性别',
    age_range STRING COMMENT '年龄段',
    zodiac STRING COMMENT '星座',
    region STRING COMMENT '地域,根据ip得到',
    device STRING COMMENT '终端类型 ',
    identity STRING COMMENT '访问类型 crawler feed user unknown',
    method STRING COMMENT 'http请求类型',
    url STRING COMMENT 'url',
    referer STRING COMMENT '来源url',
    time STRING COMMENT '时间yyyymmddhh:mi:ss'
)
PARTITIONED BY (
    dt STRING
);
AI 代码解读

3.新建rpt_user_info_d表

创建表方法同上,本小节附建表语句:

---创建rpt_user_info_d表
DROP TABLE IF EXISTS rpt_user_info_d;

CREATE TABLE rpt_user_info_d (
    uid STRING COMMENT '用户ID',
    region STRING COMMENT '地域,根据ip得到',
    device STRING COMMENT '终端类型 ',
    pv BIGINT COMMENT 'pv',
    gender STRING COMMENT '性别',
    age_range STRING COMMENT '年龄段',
    zodiac STRING COMMENT '星座'
)
PARTITIONED BY (
    dt STRING
);
AI 代码解读

上述三张表创建成功后,保存脚本文件。
保存脚本文件

工作流设计

若成功完成实验《数据采集:日志数据上传》,即可切换至任务开发tab中,双击打开workshop工作流任务。

打开工作流任务

向画布中拖入三个ODPS SQL节点,依次命名为ods_log_info_d、dw_user_info_all_d、rpt_user_info_d,并配置依赖关系如下:

SQL依赖关系

若未完成实验《数据采集:日志数据上传》篇,可通过进入查看如何创建工作流任务。

创建自定义函数

  • step1:点击下载ip2region.jar.
  • step2:切换至资源管理tab页,点击上传按钮。

进入资源管理

  • step3:点击选择文件,选择已经下载到本地的ip2region.jar。

资源上传

  • step4:点击提交
  • step5:切换至函数管理tab,点击创建函数按钮。

进入函数管理

  • step6:资源选择ip2region.jar,其他配置项如下所示。

新建函数

配置项说明如下:

  • 函数名:getregion
  • 类名:org.alidata.odps.udf.Ip2Region
  • 资源:ip2region.jar
  • step7:点击提交

配置ODPS SQL节点

1)配置ods_log_info_d节点:

  • step1:双击ods_log_info_d节点,进入节点配置界面,编写处理逻辑。

ODS

附SQL逻辑如下:

INSERT OVERWRITE TABLE ods_log_info_d PARTITION (dt=${bdp.system.bizdate})
SELECT ip
    , uid
    , time
    , status
    , bytes -- 使用自定义UDF通过ip得到地域
    , getregion(ip) AS region -- 通过正则把request差分为三个字段
    , regexp_substr(request, '(^[^ ]+ )') AS method
    , regexp_extract(request, '^[^ ]+ (.*) [^ ]+$') AS url
    , regexp_substr(request, '([^ ]+$)') AS protocol -- 通过正则清晰refer,得到更精准的url
    , regexp_extract(referer, '^[^/]+://([^/]+){1}') AS referer -- 通过agent得到终端信息和访问形式
    , CASE 
        WHEN TOLOWER(agent) RLIKE 'android' THEN 'android'
        WHEN TOLOWER(agent) RLIKE 'iphone' THEN 'iphone'
        WHEN TOLOWER(agent) RLIKE 'ipad' THEN 'ipad'
        WHEN TOLOWER(agent) RLIKE 'macintosh' THEN 'macintosh'
        WHEN TOLOWER(agent) RLIKE 'windows phone' THEN 'windows_phone'
        WHEN TOLOWER(agent) RLIKE 'windows' THEN 'windows_pc'
        ELSE 'unknown'
    END AS device
    , CASE 
        WHEN TOLOWER(agent) RLIKE '(bot|spider|crawler|slurp)' THEN 'crawler'
        WHEN TOLOWER(agent) RLIKE 'feed'
        OR regexp_extract(request, '^[^ ]+ (.*) [^ ]+$') RLIKE 'feed' THEN 'feed'
        WHEN TOLOWER(agent) NOT RLIKE '(bot|spider|crawler|feed|slurp)'
        AND agent RLIKE '^[Mozilla|Opera]'
        AND regexp_extract(request, '^[^ ]+ (.*) [^ ]+$') NOT RLIKE 'feed' THEN 'user'
        ELSE 'unknown'
    END AS identity
FROM (
    SELECT SPLIT(col, '##@@')[0] AS ip
        , SPLIT(col, '##@@')[1] AS uid
        , SPLIT(col, '##@@')[2] AS time
        , SPLIT(col, '##@@')[3] AS request
        , SPLIT(col, '##@@')[4] AS status
        , SPLIT(col, '##@@')[5] AS bytes
        , SPLIT(col, '##@@')[6] AS referer
        , SPLIT(col, '##@@')[7] AS agent
    FROM ods_raw_log_d
    WHERE dt = ${bdp.system.bizdate}
) a;
AI 代码解读
  • step2:点击保存

保存ODS

  • step3:点击返回,返回至工作流开发面板。

返回工作流任务

2)配置dw_user_info_all_d节点:

  • step1:双击dw_user_info_all_d节点,进入节点配置界面,编写处理逻辑。

DW

附SQL语句如下:

INSERT OVERWRITE TABLE dw_user_info_all_d PARTITION (dt='${bdp.system.bizdate}')
SELECT COALESCE(a.uid, b.uid) AS uid
    , b.gender
    , b.age_range
    , b.zodiac
    , a.region
    , a.device
    , a.identity
    , a.method
    , a.url
    , a.referer
    , a.time
FROM (
    SELECT *
    FROM ods_log_info_d
    WHERE dt = ${bdp.system.bizdate}
) a
LEFT OUTER JOIN (
    SELECT *
    FROM ods_user_info_d
    WHERE dt = ${bdp.system.bizdate}
) b
ON a.uid = b.uid;
AI 代码解读
  • step2:点击保存
  • step3:点击返回,返回至工作流开发面板。

配置rpt_user_info_d节点

  • step1:双击进入rpt_user_info_d节点进入配置界面。

rpt

附SQL代码如下:

INSERT OVERWRITE TABLE rpt_user_info_d PARTITION (dt='${bdp.system.bizdate}')
SELECT uid
    , MAX(region)
    , MAX(device)
    , COUNT(0) AS pv
    , MAX(gender)
    , MAX(age_range)
    , MAX(zodiac)
FROM dw_user_info_all_d
WHERE dt = ${bdp.system.bizdate}
GROUP BY uid;
AI 代码解读
  • step2:点击保存
  • step3:点击返回,返回至工作流开发面板。

提交工作流任务

  • step1:点击提交,提交已配置的工作流任务。

提交工作流

  • step2:在变更节点列表弹出框中点击确定提交

变更节点列表

提交成功后工作流任务处于只读状态,如下:

只读状态

通过补数据功能测试新建的SQL任务

鉴于在数据采集阶段已经测试了数据同步任务,本节中直接测试下游SQL任务即可,也保证了时效性。

  • step1:进入运维中心 > 任务列表,找到workshop工作流任务。

工作流任务

  • step2:单击名称展开工作流。

![进入节点试图]image

  • step3:选中ods_log_info_d节点,单击补数据

![选择补数据节点]image

  • step4:在补数据节点对话框中全选节点名称,选择业务日期,点击运行选中节点

补数据节点列表

自动跳转到补数据任务实例页面。

  • step5:输入字母‘d’,通过过滤条件刷新,直至SQL任务都运行成功即可。

展开子节点

确认数据是否成功写入MaxCompute相关表

  • step1:返回到create_table_ddl脚本文件中。
  • step2:编写并执行sql语句查看rpt_user_info_d数据情况。。

数据预览

附录:SQL语句如下。

---查看rpt_user_info_d数据情况
select * from rpt_user_info_d limit 10;
AI 代码解读
相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
祎休
+关注
目录
打赏
0
0
0
2
79072
分享
相关文章
大数据之路:阿里巴巴大数据实践——日志采集与数据同步
本资料全面介绍大数据处理技术架构,涵盖数据采集、同步、计算与服务全流程。内容包括Web/App端日志采集方案、数据同步工具DataX与TimeTunnel、离线与实时数仓架构、OneData方法论及元数据管理等核心内容,适用于构建企业级数据平台体系。
Java 大视界 -- 基于 Java 的大数据实时数据处理在车联网车辆协同控制中的应用与挑战(197)
本文深入探讨了基于 Java 的大数据实时数据处理在车联网车辆协同控制中的关键应用与技术挑战。内容涵盖数据采集、传输与实时处理框架,并结合实际案例分析了其在车辆状态监测、交通优化与协同驾驶中的应用效果,展示了 Java 大数据技术在提升交通安全性与效率方面的巨大潜力。
Java 大视界 -- Java 大数据在智能建筑能耗监测与节能策略制定中的应用(182)
本文探讨了Java大数据技术在智能建筑能耗监测与节能策略制定中的关键应用。通过Hadoop、Spark等技术实现能耗数据的存储、分析与可视化,结合实际案例,展示了Java大数据如何助力建筑行业实现节能减排目标。
Java 大视界 -- Java 大数据在智慧水利水资源调度与水情预测中的应用创新(180)
本文探讨了Java大数据技术在智慧水利中的创新应用,重点分析了其在水资源调度与水情预测中的关键技术与实践案例。通过大数据存储、实时处理与深度学习模型,Java有效提升了水利数据管理效率与水情预测准确性,助力传统水利向智能化转型。
Java 大视界 -- Java 大数据在智能金融理财产品风险评估与个性化配置中的应用(195)
本文深入探讨了Java大数据技术在智能金融理财产品风险评估与个性化配置中的关键应用。通过高效的数据采集、存储与分析,Java大数据技术助力金融机构实现精准风险评估与个性化推荐,提升投资收益并降低风险。
Java 大视界 -- Java 大数据在智能金融理财产品风险评估与个性化配置中的应用(195)
Java 大视界 -- 基于 Java 的大数据可视化在企业供应链风险预警与决策支持中的应用(204)
本篇文章探讨了基于 Java 的大数据可视化技术在企业供应链风险预警与决策支持中的深度应用。文章系统介绍了从数据采集、存储、处理到可视化呈现的完整技术方案,结合供应链风险预警与决策支持的实际案例,展示了 Java 大数据技术如何助力企业实现高效、智能的供应链管理。
Java 大视界 -- Java 大数据在智能医疗手术风险评估与术前方案制定中的应用探索(203)
本文探讨了Java大数据技术在智能医疗手术风险评估与术前方案制定中的创新应用。通过多源数据整合、智能分析模型构建及知识图谱技术,提升手术风险预测准确性与术前方案制定效率,助力医疗决策智能化,推动精准医疗发展。
Java 大视界 -- Java 大数据在智能政务公共资源交易数据分析与监管中的应用(202)
本篇文章深入探讨了 Java 大数据在智能政务公共资源交易监管中的创新应用。通过构建高效的数据采集、智能分析与可视化决策系统,Java 大数据技术成功破解了传统监管中的数据孤岛、效率低下和监管滞后等难题,为公共资源交易打造了“智慧卫士”,助力政务监管迈向智能化、精准化新时代。
Java 大视界 -- Java 大数据在智能体育赛事运动员体能监测与训练计划调整中的应用(200)
本篇文章聚焦 Java 大数据在智能体育赛事中对运动员体能监测与训练计划的智能化应用。通过构建实时数据采集与分析系统,结合机器学习模型,实现对运动员体能状态的精准评估与训练方案的动态优化,推动体育训练迈向科学化、个性化新高度。
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。

相关产品

  • 云原生大数据计算服务 MaxCompute
  • AI助理

    你好,我是AI助理

    可以解答问题、推荐解决方案等