PyODPS DataFrame:统一的数据查询语言

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 前几天,PyODPS发布了0.7版本,这篇文章给大家介绍下PyODPS新版本带来的重要特性。 之前也有若干篇文章介绍过了,我们PyODPS DataFrame是延迟执行的,在调用立即执行的方法,比如execute、persist等之前,都只是构建了表达式。

前几天,PyODPS发布了0.7版本,这篇文章给大家介绍下PyODPS新版本带来的重要特性。

之前也有若干篇文章介绍过了,我们PyODPS DataFrame是延迟执行的,在调用立即执行的方法,比如execute、persist等之前,都只是构建了表达式。而真正的执行根据具体的输入数据,来决定执行的后端。

比如,我们可以根据输入是pandas DataFrame(本地数据),还是MaxCompute Table(MaxCompute数据)来决定是在本地执行,还是在MaxComput上执行。

In [1]: import pandas as pd

In [2]: pd_df = pd.DataFrame({'a': range(3)})

In [3]: from odps.df import DataFrame

In [4]: df = DataFrame(pd_df)  # 本地数据

In [5]: df.a.sum()
|==========================================|   1 /  1  (100.00%)         0s
3

In [6]: %load_ext odps

In [7]: %enter
Out[7]: <odps.inter.Room at 0x105951990>

In [8]: df = DataFrame(o.get_table('pyodps_iris'))  # MaxCompute数据

In [9]: df.sepal_width.sum()
|==========================================|   1 /  1  (100.00%)        15s
458.10000000000014

数据库执行

来到了0.7版本,我们的后端武器库进一步扩充,现在我们支持Postgresql和MySQL,原则上我们支持所有的主流数据库,但我们只在这两个数据库上做了测试。

我们的数据库执行后端使用 sqlalchemy 实现,想要执行还需要对应数据库的driver。

现在,如果DataFrame输入的数据是sqlalchemy Table,那么我们就可以使用数据库后端来执行。

In [24]: mysql_engine = sqlalchemy.create_engine('mysql://root:123@localhost/movielens') 

In [25]: metadata = sqlalchemy.MetaData(bind=mysql_engine)   # 需要绑定engine

In [26]: table = sqlalchemy.Table('top_users', metadata, extend_existing=True, autoload=True)

In [27]: top_users = DataFrame(table)

In [28]: top_users.age.sum()
|==========================================|   1 /  1  (100.00%)         0s
763

对于postgresql也是一样。 值得注意的是,现在还有部分DataFrame操作,比如自定义函数尚未支持数据库后端

可以看到,PyODPS DataFrame就是一个统一的数据查询语言,用户不需要改写一行代码,就可以根据输入让数据在MaxCompute、本地和数据库上执行,由于DataFrame框架的灵活性,我们甚至还可以扩展出非SQL执行后端的支持。

JOIN或者UNION数据库和MaxCompute数据

过去 一篇文章 提到过,我们可以join或者union本地和MaxCompute上的数据,这样的典型场景就是,比如我有个本地excel文件,我可以轻松读取成本地DataFrame,然后直接就可以和MaxCompute数据进行操作,省去了一大堆麻烦的过程。

现在,我们也同样可以join 数据库和MaxCompute上的数据,试想,有一堆用户数据是在数据库中进行处理,然后我们无需经过同步数据等繁琐的过程,我们就可以直接join 数据库和MaxCompute上的数据,这是何其方便的事情。

比如:

In [29]: ratings = o.get_table('movielens_ratings').to_df()

In [32]: female_top_users = top_users[top_users.sex == 'F']  # MySQL中的数据

In [33]: ratings.join(female_top_users).rating.mean()
|==========================================|   1 /  1  (100.00%)        14s
2.9451170298627924

总结

我们PyODPS一直处在快速迭代的过程中,我们所有所做的努力,都是为了让大家以更好的体验来进行数据分析和机器学习。尽管我们很努力,但精力毕竟有限,难免会有bug,会有功能不完善。希望大家能给我们提issue,能贡献代码就更好啦。

项目文档:http://pyodps.readthedocs.io
项目地址:https://github.com/aliyun/aliyun-odps-python-sdk
提issue:https://github.com/aliyun/aliyun-odps-python-sdk/issues
钉钉扫码:
IMG_3110

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
4月前
|
SQL DataWorks 监控
DataWorks产品使用合集之怎么针对表中已经存在的数据进行更新
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
DataWorks产品使用合集之怎么针对表中已经存在的数据进行更新
|
16天前
|
DataWorks 搜索推荐 数据挖掘
DataWorks: 驾驭数据浪潮,解锁用户画像分析新纪元
本文详细评测了DataWorks产品,涵盖最佳实践、用户体验、与其他工具对比及Data Studio新功能。内容涉及用户画像分析、数据管理作用、使用过程中的问题与改进建议,以及Data Studio的新版Notebook环境和智能助手Copilot的体验。整体评价肯定了DataWorks在数据处理和分析上的优势,同时也指出了需要优化的地方。
87 24
|
4月前
|
数据采集 存储 DataWorks
DataWorks产品使用合集之如何查看数据质量中心(DQC)的规则执行记录
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
4月前
|
DataWorks 监控 安全
DataWorks产品使用合集之使用数据洞察过程中经常出现超时是什么导致的
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
4月前
|
存储 DataWorks 安全
DataWorks产品使用合集之数据视图如何创建
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
4月前
|
数据采集 DataWorks 数据挖掘
提升数据分析效率:DataWorks在企业级数据治理中的应用
【8月更文第25天】本文将探讨阿里巴巴云的DataWorks平台如何通过建立统一的数据标准、规范以及实现数据质量监控和元数据管理来提高企业的数据分析效率。我们将通过具体的案例研究和技术实践来展示DataWorks如何简化数据处理流程,减少成本,并加速业务决策。
541 54
|
4月前
|
SQL 分布式计算 DataWorks
利用DataWorks构建高效数据管道
【8月更文第25天】本文将详细介绍如何使用阿里云 DataWorks 的数据集成服务来高效地收集、清洗、转换和加载数据。我们将通过实际的代码示例和最佳实践来展示如何快速构建 ETL 流程,并确保数据管道的稳定性和可靠性。
216 56
|
4月前
|
数据采集 DataWorks 安全
DataWorks产品使用合集之怎么配置每天只导入10条数据
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
4月前
|
分布式计算 DataWorks 关系型数据库
DataWorks产品使用合集之ODPS数据怎么Merge到MySQL数据库
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
4月前
|
DataWorks 关系型数据库 MySQL
DataWorks产品使用合集之mysql节点如何插入数据
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。