Kubernetes 日志查询分析实践

本文涉及的产品
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
日志服务 SLS,月写入数据量 50GB 1个月
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
简介: 本文将介绍如何基于日志服务实现对 Kubernetes(以下简称 K8s)日志的采集以及查询分析,此外,还附带了对 Ingress、Audit 方案的简要介绍。为了方便大家通过操作来加深理解,本文提供了详细的操作步骤以及对应截图和配置代码。

本文将介绍如何基于日志服务实现对 Kubernetes(以下简称 K8s)日志的采集以及查询分析,此外,还附带了对 Ingress、Audit 方案的简要介绍。为了方便大家通过操作来加深理解,本文提供了详细的操作步骤以及对应截图和配置代码。

准备工作

为了完成后续的相关操作,我们需要准备一个 K8s 集群,操作步骤如下:

  1. 登陆容器服务控制台
  2. 创建一个标准托管集群(杭州区域),在向导中勾选上【使用 EIP 暴露 API Server】【使用日志服务】
  3. 集群创建完毕后,回到集群列表页面,点击【更多->通过 CloudShell 管理集群】
  4. 在 CloudShell 中输入 kubectl get ds -n kube-system,结果中显示的 logtail-ds 即为了实现数据采集所安装的日志服务组件。
  5. 打开日志服务控制台,可以看到和 K8s 集群 ID 所对应的 project 也已经创建完毕。

操作截图如下:

006y8mN6ly1g8dqitv0wdj30gd0amdgr.jpg


图:创建托管集群(步骤 2)

006y8mN6ly1g8dql3p6irj327y0ogjur.jpg


图:打开 CloudShell(步骤 3)

006y8mN6ly1g8dqlkm9atj32io09wdk9.jpg


图:在 CloudShell 中查看日志服务组件(步骤 4)

006y8mN6ly1g8dqlphq88j31v80c8ad6.jpg


图:打开日志服务控制台,查看 project(步骤 5)

1. 数据采集

在 K8s 环境下,容器日志数据从大体上分为两类:容器标准输出和容器内文本文件,前者是容器特有的一种日志存在形式,后者和传统的文本文件日志类似,只是文件存放在各个容器内部,相互之间隔离。下面我们将介绍如何对这两种类型的日志进行采集。

1.1. Mock 数据

我们将使用如下两个 YAML 文件分别生成标准输出和容器内文件两种形式的 mock 数据。

容器标准输出

# 创建两个 pod 来生成 mock 数据
apiVersion: batch/v1
kind: Job
metadata:
  name: nginx-stdout-log-demo-1
  namespace: nginx-stdout
spec:
  template:
    metadata:
      name: nginx-stdout-log-demo-1
    spec:
      containers:
      - name: nginx-stdout-log-demo-1
        image: registry.cn-hangzhou.aliyuncs.com/log-service/docker-log-test:latest
        command: ["/bin/mock_log"]
        args: ["--stderr=false", "--stdout=true", "--log-type=nginx", "--total-count=100000000", "--logs-per-sec=5"]
      restartPolicy: Never
---
apiVersion: batch/v1
kind: Job
metadata:
  name: nginx-stdout-log-demo-2
  namespace: nginx-stdout
spec:
  template:
    metadata:
      name: nginx-stdout-log-demo-2
    spec:
      containers:
      - name: nginx-stdout-log-demo-2
        image: registry.cn-hangzhou.aliyuncs.com/log-service/docker-log-test:latest
        command: ["/bin/mock_log"]
        args: ["--stderr=false", "--stdout=true", "--log-type=nginx", "--total-count=100000000", "--logs-per-sec=5"]
      restartPolicy: Never

容器内文本文件(/var/log/access.log)

apiVersion: batch/v1
kind: Job
metadata:
  name: nginx-file-log-demo
  namespace: nginx-file
spec:
  template:
    metadata:
      name: nginx-file-log-demo
    spec:
      restartPolicy: Never
      containers:
      - name: nginx-file-log-demo
        image: registry.cn-hangzhou.aliyuncs.com/log-service/docker-log-test:latest
        command: ["/bin/mock_log"]
        args: ["--log-type=nginx", "--stdout=false", "--stderr=false", "--path=/var/log/access.log", "--total-count=100000000", "--logs-per-sec=5"]

操作步骤:

  1. 打开 CloudShell,参考准备工作中的步骤 3。
  2. 在集群中应用上面提及的两个 YAML(Github)。
  3. 执行 kubectl get pods 查看负责生成日志的几个 Pod。
  4. 查看两个 Pod 生成日志的情况(根据实际情况替换命令中的 pod 名)

    • 标准输出:执行 kubectl logs -n nginx-stdout --tail=10 nginx-stdout-log-demo-1-7kvwx
    • 容器内文件:执行 kubectl exec -n nginx-file nginx-file-log-demo-7frsp -- bash -c "tail /var/log/access.log"
$ kubectl create namespace nginx-stdout
$ kubectl create -f https://raw.githubusercontent.com/goclis/kubernetes-mock-log/master/pod_nginx_stdout.yaml
$ kubectl create namespace nginx-file
$ kubectl create -f https://raw.githubusercontent.com/goclis/kubernetes-mock-log/master/pod_nginx_file.yaml

命令:生成 mock 数据(步骤 2)

$ kubectl get pods -A
NAMESPACE      NAME                                               READY   STATUS    RESTARTS   AGE
nginx-file     nginx-file-log-demo-7frsp                          1/1     Running   0          2m9s
nginx-stdout   nginx-stdout-log-demo-1-7kvwx                      1/1     Running   0          2m12s
nginx-stdout   nginx-stdout-log-demo-2-4x7vw                      1/1     Running   0          2m12s

命令:查看日志服务组件(步骤 3)

1.2. 采集标准输出

操作步骤:

  1. 登陆日志服务控制台,点击进入集群 ID 对应的 project。
  2. 创建一个 logstore 用于存储标准输出日志,比如 k8s-stdout。
  3. 在 logstore 中新增 Logtail 配置,类型为【Docker 标准输出】,选择现有机器组中前缀为 k8s-group 的机器组。
  4. 在【数据源设置】页面,填写【配置名称】和【插件配置】。

操作截图如下:

006y8mN6ly1g8dqxdnnm4j30ha0vmdhs.jpg


图:创建 Logtail 采集配置

006y8mN6ly1g8dqxitramj320g0gygq0.jpg


图:选择 Docker 标准输出配置

006y8mN6ly1g8dqysqak6j31vs0g4428.jpg


图:选择现有机器组

006y8mN6ly1g8dqyoazwmj312k0u0go4.jpg


图:选择 k8s-group 开头的机器组

006y8mN6ly1g8dqz9d11xj31br0u0dmr.jpg


图:填写 Docker 标准输出采集配置内容

以下为两个可选的采集配置(使用 IncludeLabel 分别采集两个 namespace 下的数据,参考):

配置:采集 namespace nginx-stdout

{
    "inputs": [
        {
            "detail": {
                "IncludeLabel": {
                    "io.kubernetes.pod.namespace": "nginx-stdout"
                },
                "ExcludeLabel": {}
            },
            "type": "service_docker_stdout"
        }
    ]
}

配置:采集 namespace kube-system

{
    "inputs": [
        {
            "detail": {
                "IncludeLabel": {
                    "io.kubernetes.pod.namespace": "kube-system"
                },
                "ExcludeLabel": {}
            },
            "type": "service_docker_stdout"
        }
    ]
}

1.3. 采集容器内文件

操作步骤:

  1. 登陆日志服务控制台,点击进入集群 ID 对应的 project。
  2. 创建一个 logstore 用于存储容器内文件日志,比如 nginx-file。
  3. 在 logstore 中新增 Logtail 配置,类型为【Docker 文件】,选择现有机器组中前缀为 k8s-group 的机器组。
  4. 在【数据源设置】页面,填写【配置名称】和具体的配置信息(采集文件的路径、Label 等),示例为采集 /var/log/access.log

006y8mN6ly1g8dr24hr7oj320k0gun1d.jpg


图:选择 Docker 文件配置

006y8mN6ly1g8dr2jvxmtj319u0nagqg.jpg


图:填写 Docker 文件采集配置内容

2. 日志查询

2.1. 设置字段索引 & 开启日志聚类

为了使用日志服务提供的查询、日志聚类等功能,首先需要对索引进行配置。操作步骤如下:

  1. 登陆日志服务控制台,进入集群 ID 对应的 project,从左侧导航栏的 logstore 中选择先前创建的 k8s-stdout,展开点击查询分析进行查询控制台。
  2. 点击右上角的【查询分析属性 -> 设置索引】。
  3. 在弹出窗口中勾选上【日志聚类】,然后点击【自动生成索引】。
  4. 点击【确定】保存索引。

操作截图如下:

006y8mN6ly1g8dreoeleaj30ly0ziwhq.jpg


图:进入 logstore 查询分析界面

006y8mN6ly1g8drbdqjq4j30ic03uq36.jpg


图:索引配置入口

006y8mN6ly1g8drdlvoedj30ug09ydga.jpg


图:开启日志聚类

006y8mN6ly1g8dretm38tj314r0u046g.jpg


图:自动生成字段索引

2.2. 基本查询

在配置完索引后,我们可以在查询输入框中使用查询语句可以快速地筛选日志,以下是一些示例:

  • 查看命名空间 nginx-stdout 下的日志:_namespace_:nginx-stdout
  • 查看其他命名空间下的日志:not _namespace_: nginx-stdout
  • 查看命名空间 kube-system 下指定 pod 的日志:_namespace_: kube-system and _pod_name_: xxxxxx

在实际查询过程中,我们可以通过直接点击查询结果中的内容来快速填充查询语句,截图如下。

006y8mN6ly1g8drgur795j322m0to7c0.jpg


图:点击查询结果中的内容

006y8mN6ly1g8drgxu3d5j31z50u0thr.jpg


图:查询语句快速填充

2.3. 日志聚类 & 上下文查询 & LiveTail

在排查问题时,我们一般会组合使用日志聚类上下文查询以及 LiveTail 这三个功能来辅助问题排查。

  1. 首先,利用日志聚类来快速地查看日志模式,发现其中怀疑的问题日志。
  2. 接着,利用上下文查询,来跟踪问题日志前后的日志,辅助我们定位问题。
  3. 最后,在根据问题做出调整后,使用 LiveTail 来查看最新日志的变化情况,确认是否达到修改预期。

以下假设应用 pod 是 metrics-server,我们可以借助这套方法来对它进行分析:

  1. 查询输入框输入 metrics-server,点击查询分析,可以看到所有范围(默认为最近 15 分钟)的全部日志,一般来说会很多。
  2. 由于日志较多,为了发现日志模式,我们切换到【日志聚类】标签页,可以看到这段时间内的日志在模式上分为有限的几类。我们可以拖动 pattern 进度条选择粒度,对于特定 pattern,点击【日志数量】来查看具体日志。
  3. 悬停到日志时间左侧的图标,点击弹出菜单中的【上下文浏览】,在弹出页面中同样可以进行筛选,并点击【更早】、【更新】来查看指定日志的上文和下文。
  4. 悬停到日志时间左侧的图标,点击弹出菜单中的【LiveTail】。

006y8mN6ly1g8drny6u7ij32220lyguu.jpg


图:日志聚类结果

006y8mN6ly1g8dro8ouq0j32300q4jxv.jpg


图:上下文查询入口

006y8mN6ly1g8drodxuozj314n0u07mo.jpg


图:上下文查询

006y8mN6ly1g8drok2mcmj321w0lwjyb.jpg


图:LiveTail

3. Ingress & Audit 方案

除了 K8s 环境下基本的日志采集、查询分析功能以外,我们还针对 K8s 环境下的 Ingress、审计(Audit)日志提供了方案。

3.1. Ingress

为了在集群中部署 Ingress 方案,只需要在集群已安装日志服务组件的基础上,应用如下的 YAML 文件即可:

apiVersion: log.alibabacloud.com/v1alpha1
kind: AliyunLogConfig
metadata:
  # your config name, must be unique in you k8s cluster
  name: k8s-nginx-ingress
spec:
  # logstore name to upload log
  logstore: nginx-ingress
  # product code, only for k8s nginx ingress
  productCode: k8s-nginx-ingress
  # logtail config detail
  logtailConfig:
    inputType: plugin
    # logtail config name, should be same with [metadata.name]
    configName: k8s-nginx-ingress
    inputDetail:
      plugin:
        inputs:
        - type: service_docker_stdout
          detail:
            IncludeLabel:
              io.kubernetes.container.name: nginx-ingress-controller
            Stderr: false
            Stdout: true
        processors:
        - type: processor_regex
          detail:
            KeepSource: false
            Keys:
            - client_ip
            - x_forward_for
            - remote_user
            - time
            - method
            - url
            - version
            - status
            - body_bytes_sent
            - http_referer
            - http_user_agent
            - request_length
            - request_time
            - proxy_upstream_name
            - upstream_addr
            - upstream_response_length
            - upstream_response_time
            - upstream_status
            - req_id
            - host
            NoKeyError: true
            NoMatchError: true
            Regex: ^(\S+)\s-\s\[([^]]+)]\s-\s(\S+)\s\[(\S+)\s\S+\s"(\w+)\s(\S+)\s([^"]+)"\s(\d+)\s(\d+)\s"([^"]*)"\s"([^"]*)"\s(\S+)\s(\S+)+\s\[([^]]*)]\s(\S+)\s(\S+)\s(\S+)\s(\S+)\s(\S+)\s*(\S*).*
            SourceKey: content

该 YAML 会在集群对应的日志服务 project 中创建一个名为 nginx-ingress 的 logstore,存储相关的日志,并且会对应地创建一系列基于 Ingress 日志所构建的详细报表,辅助我们分析 Ingress 日志。

006y8mN6ly1g8dt2sc61jj31yj0u0k4t.jpg


图:Ingress 概览

更多信息可以阅读《Kubernetes Ingress 日志分析入门》

审计(Audit)

目前,审计方案会在集群创建时自动应用,相关的日志会存储在日志服务 project 下以 audit- 为前缀的 logstore 中,其中包含针对集群操作的详细日志,比如资源(Pod、Deploy)的创建与删除、集群的扩容记录等。类似地,审计方案同样提供了一系列详细报表。

006y8mN6ly1g8dt71j88dj31n90u0k6k.jpg


图:审计中心概览

更多信息可以阅读《最全 Kubernetes 审计日志方案》

参考文档

qrCode


扫码加入钉钉群

目录
相关文章
|
21天前
|
存储 缓存 关系型数据库
MySQL事务日志-Redo Log工作原理分析
事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
1585 14
|
6天前
|
Kubernetes 监控 开发者
专家级实践:利用Cloud Toolkit进行微服务治理与容器化部署
【10月更文挑战第19天】在当今的软件开发领域,微服务架构因其高可伸缩性、易于维护和快速迭代的特点而备受青睐。然而,随着微服务数量的增加,管理和服务治理变得越来越复杂。作为阿里巴巴云推出的一款免费且开源的开发者工具,Cloud Toolkit 提供了一系列实用的功能,帮助开发者在微服务治理和容器化部署方面更加高效。本文将从个人的角度出发,探讨如何利用 Cloud Toolkit 来应对这些挑战。
23 2
|
7天前
|
Kubernetes 持续交付 Docker
探索DevOps实践:利用Docker与Kubernetes实现微服务架构的自动化部署
【10月更文挑战第18天】探索DevOps实践:利用Docker与Kubernetes实现微服务架构的自动化部署
36 2
|
22天前
|
存储 消息中间件 大数据
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
22 4
|
23天前
|
SQL 分布式计算 Hadoop
Hadoop-19 Flume Agent批量采集数据到HDFS集群 监听Hive的日志 操作则把记录写入到HDFS 方便后续分析
Hadoop-19 Flume Agent批量采集数据到HDFS集群 监听Hive的日志 操作则把记录写入到HDFS 方便后续分析
38 2
|
26天前
|
Kubernetes Docker 微服务
微服务实践k8s&dapr开发部署实验(1)服务调用(一)
微服务实践k8s&dapr开发部署实验(1)服务调用(一)
44 2
|
26天前
|
Kubernetes Cloud Native 微服务
微服务实践之使用 kube-vip 搭建高可用 Kubernetes 集群
微服务实践之使用 kube-vip 搭建高可用 Kubernetes 集群
78 1
|
21天前
|
运维 Kubernetes Cloud Native
云原生时代的容器编排:Kubernetes入门与实践
【10月更文挑战第4天】在云计算的浪潮中,云原生技术以其敏捷、可扩展和高效的特点引领着软件开发的新趋势。作为云原生生态中的关键组件,Kubernetes(通常被称为K8s)已成为容器编排的事实标准。本文将深入浅出地介绍Kubernetes的基本概念,并通过实际案例引导读者理解如何利用Kubernetes进行高效的容器管理和服务部署。无论你是初学者还是有一定经验的开发者,本文都将为你打开云原生世界的大门,并助你一臂之力在云原生时代乘风破浪。
|
26天前
|
Kubernetes Docker 微服务
微服务实践k8s&dapr开发部署实验(1)服务调用(二)
微服务实践k8s&dapr开发部署实验(1)服务调用(二)
46 0
|
存储 监控 Kubernetes
Kubernetes 日志查询分析实践
本文将介绍如何基于日志服务实现对 Kubernetes(以下简称 K8s)日志的采集以及查询分析,此外,还附带了对 Ingress、Audit 方案的简要介绍。为了方便大家通过操作来加深理解,本文提供了详细的操作步骤以及对应截图和配置代码。
1327 0
Kubernetes 日志查询分析实践

推荐镜像

更多