大数据打造你的变美频道——数加平台上小红唇的大数据实践

简介: 在2017在线峰会——票选最美云上大数据暨大数据技术峰会上,来自小红唇的王洋分享了数加平台上小红唇的大数据实践。他对数据仓储解决方案和搜索引擎进行了详细介绍。通过算法平台应用的基于视频元信息的回归、近义词、业务总线三个案例具体介绍了数加平台的大数据应用实践。

在2017在线峰会——票选最美云上大数据暨大数据技术峰会上,来自小红唇的王洋分享了数加平台上小红唇的大数据实践。他对数据仓储解决方案和搜索引擎进行了详细介绍。通过算法平台应用的基于视频元信息的回归、近义词、业务总线三个案例具体介绍了数加平台的大数据应用实践。

 

以下内容根据直播视频整理而成。

 

小红唇App

小红唇App是国内最大的一款针对15-25岁年轻女性的垂直视频分享社区和社交化电商平台。其为用户提供了丰富的平台内容、活跃的社区生态和优质的产品选择。用一句话概括小红唇业务模式为短视频美妆社区电商。

数据仓库

febdc60912f480c7cc99716a1f038cfeac1a0f3b

小红唇App的数据来源主要为两个方面:业务服务器产生的API日志,代表着用户的各种行为数据;服务器产生的各种交易数据,比如用户发的帖子、买的东西。用户行为日志是通过阿里云的datahub组件把API日志采集到MaxCompute平台上。业务数据是通过阿里云提供的DATAX工具载入到MaxCompute平台上。目前,业务数据库已经完全迁移到了阿里的RDS平台,只需要在数加的IDE里做一些简单的配置即可将数据完整的迁移过来。当所有数据都搬到MaxCompute平台上之后,在其上做的数据开发更加轻松。在其上,可以用类SQL的语句编写数据清洗和转换的执行任务,平台同时提供管理器对任务进行调度和管理。在数仓之上,构建了很多应用,最直接的就是QUICK BI。社区内容运营和商品运营都是依赖于实际的运营数据来做进一步的决策和运营商的策略调整,QUICK BI对运营的指导非常大。阿里云的QUICK BI不需要开发可视化的前端,只需要在数加的data IDE里面做相应数据任务的编排就可以很容易的通过QUICK BI产品展示出来。并且,在QUICK BI可视化的界面上不仅有各种图表的展现还提供了一定功能的多维数据分析,极大提高了运营效率。

推荐引擎

0d5eec8f4fd81ae4d7b26fbfcd21f9dad6f77227

推荐引擎的整体架构如上图所示。虚线框以内是推荐引擎产品本身的内容。我们需要做的仅仅是把我们的数据按照推荐引擎需要的格式准备好,在MaxCompute里面把对应的表都建好。主要应用场景是短视频和图片的推荐,推荐引擎打理好一切之后,得到推荐结果以API形式供业务服务器调用。除了便捷性,推荐引擎还提供了非常强的灵活性。主要做了首页推荐和详情页推荐,首页推荐主要是用基于协同过滤的算法来计算出结果,详情页推荐对阿里云的模板进行了修改引入了基于TFIDF算法的计算节点来加强了相关性的推荐。同时,推荐引擎还支持A/B TEST测试体系,对模板算法和参数的细微调整都可以定量化的分析和计算出来。推荐引擎的另外一个优势是可以和流计算相结合,把用户的数据实时导入计算引擎中,实时对推荐结果进行修正。

算法平台应用

基于视频元信息的回归

作为一个UGC的平台,用户上传内容的质量是参差不齐的,为了保证平台内容的质量。编辑进行了很多精选和挑选的工作。如何提升编辑的筛选效率?为此,选择了阿里云的机器学习平台。通过视频的元信息(时长,帧率,码率,描述内容,亮度,对比度,分辨率,锐度)的抽取,形成了特征矩阵,随机选取了已有视频数据;以是否经过编辑精选做了有监督的逻辑回归训练,训练出模型;对新的视频应用这个模型给出预判评估,作为视频编辑的参考, 及搜索推荐的影响因子。

128ce6bf2069e75336b8d97a0000f57744dead14

具体的过程如上图所示。我们需要将自己的视频信息进行量化,通过拖拽、拼接构建起训练的模型。最左边这张图应用了逻辑回归、线性回归、随机森林三种模型进行训练,目前选用的是逻辑回归的模型。在算法平台训练完模型之后会非常容易的导入到Date IDE中,准备好的新视频数据就会把模型节点加进去,得到对应的预测打分。最右边的图是把评分结果通过QUICK BI展示。整个过程没有太多的工作量,只需要在平台上做一些配置就可以完成整个视频元信息的回归和训练。

近义词

近义词主要是为了优化搜索的体验,具体是把用户发布的内容、视频的名称、描述、用户的标签、评论等语料信息通过阿里云word2vec算发获取词向量,通过余弦相似度计算获取近义词,通过人工筛选、录入到搜索引擎的同义词库中提升搜索体验。

344d562f393f331d9f0a732b0e3fa1ea89cac322

最上层是用户输入的元数据,通过几个步骤,以及K-means聚类算法做了一些分析。

业务总线

2073f186d904ec51b7cb442842b48c8592889fe0

最开始使用流计算只是为了提升一些应用场景(搜索热词统计、实时热度统计)的响应速度。但是,通过流计算已经截取了所有的业务事件,那么是否可以通过流计算将业务事件实时触发出来支撑类似于发送优惠券、推送消息等业务?实践证明了其可行性。目前,通过流计算这套业务总线体系的时延控制在了秒级。

数加的“降维打击”

小红唇App拥抱数加已有半年光景,对数加的体验非常好,其感受主要为以下四点:不需要像传统大数据业务一样构建一个非常复杂的Hadoop栈,并且对其进行运维,节省了金钱和时间成本;MaxCompute的整个生态系统设计的比较完善,无需专职数据团队,降低了人员成本;得益于数加的生态,可以在21天内搭建推荐系统;借助流计算非侵入实现业务总线,满足了绝大部分场景。
相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
3月前
|
数据可视化 关系型数据库 MySQL
基于python大数据的的海洋气象数据可视化平台
针对海洋气象数据量大、维度多的挑战,设计基于ECharts的可视化平台,结合Python、Django与MySQL,实现数据高效展示与交互分析,提升科研与决策效率。
|
5月前
|
存储 数据采集 搜索推荐
Java 大视界 -- Java 大数据在智慧文旅旅游景区游客情感分析与服务改进中的应用实践(226)
本篇文章探讨了 Java 大数据在智慧文旅景区中的创新应用,重点分析了如何通过数据采集、情感分析与可视化等技术,挖掘游客情感需求,进而优化景区服务。文章结合实际案例,展示了 Java 在数据处理与智能推荐等方面的强大能力,为文旅行业的智慧化升级提供了可行路径。
Java 大视界 -- Java 大数据在智慧文旅旅游景区游客情感分析与服务改进中的应用实践(226)
|
5月前
|
数据采集 SQL 搜索推荐
大数据之路:阿里巴巴大数据实践——OneData数据中台体系
OneData是阿里巴巴内部实现数据整合与管理的方法体系与工具,旨在解决指标混乱、数据孤岛等问题。通过规范定义、模型设计与工具平台三层架构,实现数据标准化与高效开发,提升数据质量与应用效率。
大数据之路:阿里巴巴大数据实践——OneData数据中台体系
|
6月前
|
数据采集 存储 大数据
大数据之路:阿里巴巴大数据实践——日志采集与数据同步
本资料全面介绍大数据处理技术架构,涵盖数据采集、同步、计算与服务全流程。内容包括Web/App端日志采集方案、数据同步工具DataX与TimeTunnel、离线与实时数仓架构、OneData方法论及元数据管理等核心内容,适用于构建企业级数据平台体系。
|
6月前
|
分布式计算 监控 大数据
大数据之路:阿里巴巴大数据实践——离线数据开发
该平台提供一站式大数据开发与治理服务,涵盖数据存储计算、任务调度、质量监控及安全管控。基于MaxCompute实现海量数据处理,结合D2与DataWorks进行任务开发与运维,通过SQLSCAN与DQC保障代码质量与数据准确性。任务调度系统支持定时、周期、手动运行等多种模式,确保高效稳定的数据生产流程。
大数据之路:阿里巴巴大数据实践——离线数据开发
|
6月前
|
数据采集 分布式计算 DataWorks
ODPS在某公共数据项目上的实践
本项目基于公共数据定义及ODPS与DataWorks技术,构建一体化智能化数据平台,涵盖数据目录、归集、治理、共享与开放六大目标。通过十大子系统实现全流程管理,强化数据安全与流通,提升业务效率与决策能力,助力数字化改革。
230 4
|
6月前
|
分布式计算 DataWorks 数据处理
在数据浪潮中前行:记录一次我与ODPS的实践、思考与展望
本文详细介绍了在 AI 时代背景下,如何利用阿里云 ODPS 平台(尤其是 MaxCompute)进行分布式多模态数据处理的实践过程。内容涵盖技术架构解析、完整操作流程、实际部署步骤以及未来发展方向,同时结合 CSDN 博文深入探讨了多模态数据处理的技术挑战与创新路径,为企业提供高效、低成本的大规模数据处理方案。
366 3
|
6月前
|
机器学习/深度学习 存储 分布式计算
ODPS驱动电商仓储革命:动态需求预测系统的落地实践
本方案基于ODPS构建“预测-仿真-决策”闭环系统,解决传统仓储中滞销积压与爆款缺货问题。通过动态特征工程、时空融合模型与库存仿真引擎,实现库存周转天数下降42%,缺货率下降65%,年损减少5000万以上,显著提升运营效率与GMV。
686 1
|
5月前
|
存储 SQL 分布式计算
大数据之路:阿里巴巴大数据实践——元数据与计算管理
本内容系统讲解了大数据体系中的元数据管理与计算优化。元数据部分涵盖技术、业务与管理元数据的分类及平台工具,并介绍血缘捕获、智能推荐与冷热分级等技术创新。元数据应用于数据标签、门户管理与建模分析。计算管理方面,深入探讨资源调度失衡、数据倾斜、小文件及长尾任务等问题,提出HBO与CBO优化策略及任务治理方案,全面提升资源利用率与任务执行效率。
|
6月前
|
数据采集 人工智能 大数据
10倍处理效率提升!阿里云大数据AI平台发布智能驾驶数据预处理解决方案
阿里云大数据AI平台推出智能驾驶数据预处理解决方案,助力车企构建高效稳定的数据处理流程。相比自建方案,数据包处理效率提升10倍以上,推理任务提速超1倍,产能翻番,显著提高自动驾驶模型产出效率。该方案已服务80%以上中国车企,支持多模态数据处理与百万级任务调度,全面赋能智驾技术落地。
865 0

相关产品

  • 云原生大数据计算服务 MaxCompute