大数据核心价值是“分析和预测”

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 海量数据本身并不能给企业带来太多的价值,通过数据的理解、分析、探索和挖掘,找出对企业有价值的关键数据,帮助企业进行更好的管理和预测,这样数据才能给企业带来足够的价值。

今天大数据变的这么重要源自一个很重要的前提:数据更容易获取以及数据处理成本更低了。海量数据本身并不能给企业带来太多的价值,通过数据的理解、分析、探索和挖掘,找出对企业有价值的关键数据,帮助企业进行更好的管理和预测,这样数据才能给企业带来足够的价值。

随着科技的发展,特别是各种感应科技(如RFID技术)的出现使各种物体和设施能够被更准确、更透彻地感知,当今的世界里每个人至少拥有10亿个晶体管,每年全球要消耗掉几百亿个射频识别标记(RFID),这些物联化的设备每时每刻都在生成数据,有些数据是固定结构的,有些不是,如何从大量的不统一的数据中识别出有价值的数据,剔除没有价值的“噪音”数据是首先需要考虑的。先进的软硬件技术使用户可以对海量数据进行整理、加工、分析和处理从而实现高度的智能化,帮助人们做出正确的行动决策。智慧的力量无处不在,经济可行的智能技术将被应用到各种行业,提供很多以前无法实现的服务。在此基础上,整个世界都将更紧密的关联整合,形成各种各样的智慧系统。
通过“智慧的交通”,城市管理者可以前瞻性地规划城市立体交通,比如城市路网设计、交通信号灯控制、公交路线设计、出租车数量控制、交通诱导系统、交通流量预测、交通拥堵防止系统、突发交通状况下应急处理、出行最佳线路提示和智慧交通管理平台构建(整合交管、公安、路政、公交和出租等部门)等;作为出行者,您可以随时了解城市的交通状态,从而及时调整出行路线;作为城市管理者,可以依据交通预测提前进行交通预案管理,提高车辆在拥堵时段的通行效率等。
通过“智慧的医疗”,管理者可以合理地规划医疗资源布局和医疗平台建设,使得病人去医院看病时,不再需要排长队、奔波于各个窗口之间;通过构建全面的医院BI解决方案,可以帮助医院进行临床分析、管理分析和科研分析,优化疾病管理,帮助医院进行药品监测,如药品不良反应等;通过构建居民主索引系统,可以实现以人为本的医疗服务体系。
通过“智慧的铁路”,管理者可以加强铁路资产管理、提高效率、安全性和旅客体验;通过“智慧的食品”,您可以了解摆在餐桌上的食物来自哪块土地、运输过程中经过了哪些环节;通过“智慧的城市”,可以使行政审批的速度大大加快,从“月”缩短至“天”,还可以让您享受教育、就业、社会保障和住房等方面更加便捷的服务;通过“智慧的水资源”,加强水资源的再生利用、高效管理和高科技治理污染,形成生态系统,让厨房里的自来水可以放心饮用,因为水的整个输送过程都在被严密监测着。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
22天前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
46 4
|
22天前
|
SQL 消息中间件 分布式计算
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
57 5
|
2月前
|
存储 大数据 测试技术
用于大数据分析的数据存储格式:Parquet、Avro 和 ORC 的性能和成本影响
在大数据环境中,数据存储格式直接影响查询性能和成本。本文探讨了 Parquet、Avro 和 ORC 三种格式在 Google Cloud Platform (GCP) 上的表现。Parquet 和 ORC 作为列式存储格式,在压缩和读取效率方面表现优异,尤其适合分析工作负载;Avro 则适用于需要快速写入和架构演化的场景。通过对不同查询类型(如 SELECT、过滤、聚合和联接)的基准测试,本文提供了在各种使用案例中选择最优存储格式的建议。研究结果显示,Parquet 和 ORC 在读取密集型任务中更高效,而 Avro 更适合写入密集型任务。正确选择存储格式有助于显著降低成本并提升查询性能。
344 1
用于大数据分析的数据存储格式:Parquet、Avro 和 ORC 的性能和成本影响
|
3月前
|
分布式计算 Hadoop 大数据
Jupyter 在大数据分析中的角色
【8月更文第29天】Jupyter Notebook 提供了一个交互式的开发环境,它不仅适用于 Python 编程语言,还能够支持其他语言,包括 Scala 和 R 等。这种多语言的支持使得 Jupyter 成为大数据分析领域中非常有价值的工具,特别是在与 Apache Spark 和 Hadoop 等大数据框架集成方面。本文将探讨 Jupyter 如何支持这些大数据框架进行高效的数据处理和分析,并提供具体的代码示例。
86 0
|
1天前
|
人工智能 供应链 搜索推荐
大数据分析:解锁商业智能的秘密武器
【10月更文挑战第31天】在信息爆炸时代,大数据分析成为企业解锁商业智能的关键工具。本文探讨了大数据分析在客户洞察、风险管理、供应链优化、产品开发和决策支持等方面的应用,强调了明确分析目标、选择合适工具、培养专业人才和持续优化的重要性,并展望了未来的发展趋势。
|
17天前
|
存储 SQL 分布式计算
湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
【10月更文挑战第7天】湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
22 1
|
22天前
|
存储 消息中间件 大数据
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
23 4
|
21天前
|
消息中间件 druid 大数据
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(二)
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(二)
26 2
|
21天前
|
消息中间件 分布式计算 druid
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(一)
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(一)
45 1
|
4天前
|
数据采集 分布式计算 OLAP
最佳实践:AnalyticDB在企业级大数据分析中的应用案例
【10月更文挑战第22天】在数字化转型的大潮中,企业对数据的依赖程度越来越高。如何高效地处理和分析海量数据,从中提取有价值的洞察,成为企业竞争力的关键。作为阿里云推出的一款实时OLAP数据库服务,AnalyticDB(ADB)凭借其强大的数据处理能力和亚秒级的查询响应时间,已经在多个行业和业务场景中得到了广泛应用。本文将从个人的角度出发,分享多个成功案例,展示AnalyticDB如何助力企业在广告投放效果分析、用户行为追踪、财务报表生成等领域实现高效的数据处理与洞察发现。
18 0