天猫精灵业务如何使用机器学习PAI进行模型推理优化

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 作者:如切,悟双,楚哲,晓祥,旭林 引言 天猫精灵(TmallGenie)是阿里巴巴人工智能实验室(Alibaba A.I.Labs)于2017年7月5日发布的AI智能语音终端设备。天猫精灵目前是全球销量第三、中国销量第一的智能音箱品牌。

作者:如切,悟双,楚哲,晓祥,旭林

引言

天猫精灵(TmallGenie)是阿里巴巴人工智能实验室(Alibaba A.I.Labs)于2017年7月5日发布的AI智能语音终端设备。天猫精灵目前是全球销量第三、中国销量第一的智能音箱品牌。

在天猫精灵业务系统中,大量使用了算法模型。如领域分类模型,意图分类模型,槽填充模型,多轮对话模型等。当前天猫精灵后台有上百个正在使用的算法模型。

在模型服务方面,有两个问题非常重要:

  • 首先,为了保证服务能够得到快速响应,模型的 RT 必须尽可能的短。
  • 其次,我们希望在硬件资源一定的情况下能够支持更多的 qps 访问,从而降低整体成本。


机器学习PAI是阿里巴巴AI开发平台,为AI开发者提供软硬一体的编程环境和高性能训练与推理引擎框架。

天猫精灵业务 PAI 模型的优化主要通过 AutoAI 接入 PAI Blade 的模型推理优化能力。实践显示,在天猫精灵业务中,结合使用 blade 优化和编译优化,使用 PAI-Blade 优化在最多可节省 86% 的资源,同时将 RT 降低了70%。

关于 PAI-Blade

PAI-Blade 是 阿里巴巴PAI平台针对深度学习模型开发的通用推理优化引擎。目前支持Tensorflow(包括Keras .h5模型),Caffe,及Onnx格式模型。通过这几种主流的模型前端表示,直接或间接涵盖了几乎所有深度学习框架。

Blade推理优化引擎有机融合了包括Blade graph optimizer、TensorRT、PAI-TAO、Blade custom optimizer、Blade int8 (mixed-precision)Blade Auto-Compression在内的多种优化技术。Blade会首先对模型进行分析,基于对模型的理解对模型的部分或全部应用上述的优化技术,优化过程包括但不限于:

  • 通用图优化
  • 基于理解的计算图等效变换
  • 算子融合
  • 对计算图算子丰富的高效实现所进行的组合优化
  • JIT编译
  • 基于模板及历史数据实现的半自动或自动codegen
  • 启发式的Auto-Tuning
  • 模型压缩、剪裁
  • 模型低精度及混合精度量化
  • 模型低精度量化前提下的精度恢复技术

所有的优化技术均面向通用性设计,可以应用在不同的业务场景中。Blade的每一步优化过程都对数值结果的准确性进行了验证,确保输出的优化结果不会对模型本来的精度或指标产生非预期的影响。

Blade推理优化引擎近期有机融合了PAI-TAO编译优化的技术,可以对模型中长尾的一些算子进行自动融合编译为后端的高效实现,可以进一步扩大Blade的优化覆盖面及提升模型推理性能。

接入方案

AutoAI 是 AILabs 内模型训练、部署、发布、灰度的一体化平台。我们在 AutoAI 实现模型推理优化功能的接入。

 111.png

AutoAI 在线部分主要分为模型管理和调用 SDK。

  • 模型管理: 用户通过模型管理进行模型的部署、发布操作。将模型部署到 EAS 服务,并将配置信息发布到 Diamond。
  • 模型调用 SDK: 调用模型的应用通过 autoai 提供的模型调用 sdk 访问模型服务。模型管理同 sdk 通过共享 diamond 配置数据实现协同。模型更新后,diamond 配置信息同步更新。这些更新会同步给集成了 sdk 的应用。应用调用模型服务时使用对应的配置信息访问已发布的模型。
  • blade 切面:blade 模型同普通 eas 模型在部署和发布的时候执行的动作都不相同。使用 blade 方式部署和发布的模型,调用的时候需要使用 blade-sdk,一般的 eas 模型调用的时候使用 eas-sdk。因此,我们使用 blade 切面来控制模型的部署、发布和调用。部署的时候,通过 blade 切面,根据配置是否是blade 模型进行部署。发布的时候,blade 模型指定特定的 processor 写入到 diamond。调用的时候,根据是否是 blade 模型,决定通过哪个模型访问客户端访问模型。

应用场景

我们在多个场景都使用 Blade 对模型进行推理优化。部分模型进行过定制优化,部分模型集成了 blade 已有的优化能力。

模型1

模型1 是一个 ASR 模型,整个模型架构采用encoder-decoder结构,其性能的消耗主要是在decoder上。

我们对比了有无blade,有无编译优化时的性能。相关配置:

  • instance = 1
  • gpu=1
  • cpu = 16

测试结果如下:

 

qps

rt

无优化

10

600ms

blade 优化

70

280ms

blade +编译优化

70

180ms

模型2

介绍

该模型使用BERT进行二分类,其中pre-train模型为google提供的中文bert模型,进行分类的句对分别为user query以及在answer库中召回的answer,如“天猫精灵早上好”和“你也早上好”。模型的返回值为0-1之间的连续值,返回值越大,表示qury和answer之间的问答对应关系越强。

测试

测试结果如下:

batchsize

rt-baseline(毫秒)

rt-blade(毫秒)

1

62

22

10

73

39

20

87

58

50

130

95

100

201

160

模型3

介绍

该模型用于天猫精灵NLU时的领域分类。

输入是用户的query及词典数据,输出是领域类别标签。该模型也是基于 Transformer 结构的。

压测:

资源配置:1GPU, 4CPU

参数配置:batch_timeout=5, batch_queue_size=256

配置

是否blade

应用客户端结果

模型服务端结果

workers=2,batch_size=8

qps:420, rt:38.82

qps:490, rt:30

workers=1,batch_size=8

qps:480, rt:33.5

qps:570, rt:24

workers=1,batch_size=12

qps:436, rt:36

qps:522, rt:27

workers=1,batch_size=16

qps:409, rt:38

qps:500, rt:29

workers=2,batch_size=8

qps:448, rt:37

qps:530, rt:28

workers=1,batch_size=8

qps:585, rt:28.6

qps:620, rt:19.5

workers=1,batch_size=12

qps:475, rt:33

qps:564, rt:23

workers=1,batch_size=16

qps:477, rt:33.5

qps:556, rt:23.5

 

模型4

介绍:

该模型是个语义匹配模型,输入是两段文本,输出是相关性分数。

测试:

资源配置:1GPU, 1CPU

参数配置: max_batch_timeout=5, max_queue_size=256

batch size

非blade耗时

blade耗时

10

22.61ms

21.73ms

20

45.67ms

42.49ms

30

66.31ms

60.53ms

 

总结

为了提升天猫精灵业务的用户体验,需要对模型推理进行优化。我们主要接入了 PAI Blade 的模型优化能力,通过 AutoAI 接入 blade 模型的部署发布以及调用过程。从效果上看,接入 blade 最高可以降低 rt 70% 以上。在未经过定制优化的场景,blade 也可以减少至少 10% 到 20% 左右的 rt。

 


相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
26天前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
10天前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
5天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
22 2
|
1月前
|
机器学习/深度学习 PyTorch API
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
Transformer架构自2017年被Vaswani等人提出以来,凭借其核心的注意力机制,已成为AI领域的重大突破。该机制允许模型根据任务需求灵活聚焦于输入的不同部分,极大地增强了对复杂语言和结构的理解能力。起初主要应用于自然语言处理,Transformer迅速扩展至语音识别、计算机视觉等多领域,展现出强大的跨学科应用潜力。然而,随着模型规模的增长,注意力层的高计算复杂度成为发展瓶颈。为此,本文探讨了在PyTorch生态系统中优化注意力层的各种技术,
58 6
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
|
19天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
37 12
|
19天前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
49 4
|
26天前
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
46 8
|
26天前
|
机器学习/深度学习 Python
机器学习中模型选择和优化的关键技术——交叉验证与网格搜索
本文深入探讨了机器学习中模型选择和优化的关键技术——交叉验证与网格搜索。介绍了K折交叉验证、留一交叉验证等方法,以及网格搜索的原理和步骤,展示了如何结合两者在Python中实现模型参数的优化,并强调了使用时需注意的计算成本、过拟合风险等问题。
47 6
|
29天前
|
机器学习/深度学习 数据采集 算法
从零到一:构建高效机器学习模型的旅程####
在探索技术深度与广度的征途中,我深刻体会到技术创新既在于理论的飞跃,更在于实践的积累。本文将通过一个具体案例,分享我在构建高效机器学习模型过程中的实战经验,包括数据预处理、特征工程、模型选择与优化等关键环节,旨在为读者提供一个从零开始构建并优化机器学习模型的实用指南。 ####
|
1月前
|
人工智能 边缘计算 JSON
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。

相关产品

  • 人工智能平台 PAI