透过真实场景分析K8S的EndpointController的源码

简介: 场景重现最近遇到一个问题,在K8S的几台机器上中创建了Glusterfs的集群,通过官方的教程一步步的来利用Glusterfs创建Volume以及PV,不过只是创建了每个Volume的Endpoint,并没有相对应的创建Service实例(官方说创建Service会使Endpoint持久化,当时并...

场景重现
最近遇到一个问题,在K8S的几台机器上中创建了Glusterfs的集群,通过官方的教程一步步的来利用Glusterfs创建Volume以及PV,不过只是创建了每个Volume的Endpoint,并没有相对应的创建Service实例(官方说创建Service会使Endpoint持久化,当时并没有理会),然后在一次集群重启的时候发现Endpoint实例并没有启动起来,很疑惑,像其他的K8S对象,例如POD,Deployment,Service都启动起来了,但是Endpoint并没有,带着这个问题看了下官方的Issue,并没有什么有效的解答,大家可以参考一下Issue: Endpoints are not persistented

  1. 探究源码
    1.1 源码版本

基于k8s release-1.13
1.2 源码目录结构
由于我们重点看Endpoint部分,因此我们只看Endpoint相关的源码
Endpoint
1.3 Endpoint的初始化
文件位置: endpoints_controller.go

// NewEndpointController returns a new *EndpointController.
//我们可以看到在Endpoint初始化的时候,已经注册了三个informer,分别是podInformer,serviceInformer,endpointsInformer
func NewEndpointController(podInformer coreinformers.PodInformer, serviceInformer coreinformers.ServiceInformer,

endpointsInformer coreinformers.EndpointsInformer, client clientset.Interface) *EndpointController {
broadcaster := record.NewBroadcaster()
broadcaster.StartLogging(klog.Infof)
broadcaster.StartRecordingToSink(&v1core.EventSinkImpl{Interface: client.CoreV1().Events("")})
recorder := broadcaster.NewRecorder(scheme.Scheme, v1.EventSource{Component: "endpoint-controller"})

if client != nil && client.CoreV1().RESTClient().GetRateLimiter() != nil {
    metrics.RegisterMetricAndTrackRateLimiterUsage("endpoint_controller", client.CoreV1().RESTClient().GetRateLimiter())
}
e := &EndpointController{
    client:           client,
    queue:            workqueue.NewNamedRateLimitingQueue(workqueue.DefaultControllerRateLimiter(), "endpoint"),
    workerLoopPeriod: time.Second,
}
    //这里对service进行watch操作,并注册了对应的add\update\del等操作
serviceInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{

//add:以添加的service的namespace/name形式为key,并将该key加入 queue

    AddFunc: e.enqueueService,

//update:以更新后的service的namespace/name形式为key,并将该key加入 queue

    UpdateFunc: func(old, cur interface{}) {
        e.enqueueService(cur)
    },

//delete:以删除的service的namespace/name形式为key,并将该key加入 queue

    DeleteFunc: e.enqueueService,
})
e.serviceLister = serviceInformer.Lister()
e.servicesSynced = serviceInformer.Informer().HasSynced
    //这里对pod进行watch操作,并注册了对应的add\update\del等操作
podInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{
    AddFunc:    e.addPod,
    UpdateFunc: e.updatePod,
    DeleteFunc: e.deletePod,
})
e.podLister = podInformer.Lister()
e.podsSynced = podInformer.Informer().HasSynced

e.endpointsLister = endpointsInformer.Lister()
e.endpointsSynced = endpointsInformer.Informer().HasSynced

e.triggerTimeTracker = NewTriggerTimeTracker()
e.eventBroadcaster = broadcaster
e.eventRecorder = recorder

return e

}
我们看看pod注册的Handler引用了哪些函数

1.3.1 e.addPod
func (e *EndpointController) addPod(obj interface{}) {
//实例化一个pod对象

pod := obj.(*v1.Pod)
services, err := e.getPodServiceMemberships(pod)
if err != nil {
    utilruntime.HandleError(fmt.Errorf("Unable to get pod %s/%s's service memberships: %v", pod.Namespace, pod.Name, err))
    return
}

//将service集合以namespace/name为key逐个加入到queue中

for key := range services {
    e.queue.Add(key)
}

}

func (e EndpointController) getPodServiceMemberships(pod v1.Pod) (sets.String, error) {

set := sets.String{}

//获取pod与service的映射关系

services, err := e.serviceLister.GetPodServices(pod)
if err != nil {
    // don't log this error because this function makes pointless
    // errors when no services match.
    return set, nil
}

//查找逻辑为逐个对比service的selector与该pod的label,如果service的selector为该pod label的子集,则表示该pod属于service

for i := range services {
    key, err := controller.KeyFunc(services[i])
    if err != nil {
        return nil, err
    }
    set.Insert(key)
}
return set, nil

}
1.3.2 e.updatePod
func (e *EndpointController) updatePod(old, cur interface{}) {

newPod := cur.(*v1.Pod)
oldPod := old.(*v1.Pod)

//比较两者的ResourceVersion,对比更新后的pod与原pod,如果两者的资源版本相等,则直接返回,不进行入队操作

if newPod.ResourceVersion == oldPod.ResourceVersion {
    // Periodic resync will send update events for all known pods.
    // Two different versions of the same pod will always have different RVs.
    return
}

//判断pod相关信息是否发生改变

podChangedFlag := podChanged(oldPod, newPod)

// Check if the pod labels have changed, indicating a possible
// change in the service membership
labelsChanged := false

//判断两者的label是否已经不一致,或者hostname或subdomain已改变

if !reflect.DeepEqual(newPod.Labels, oldPod.Labels) ||
    !hostNameAndDomainAreEqual(newPod, oldPod) {
    labelsChanged = true
}

// If both the pod and labels are unchanged, no update is needed
if !podChangedFlag && !labelsChanged {
    return
}

//判断错误,则获取对应的service和pod映射关系

services, err := e.getPodServiceMemberships(newPod)
if err != nil {
    utilruntime.HandleError(fmt.Errorf("Unable to get pod %v/%v's service memberships: %v", newPod.Namespace, newPod.Name, err))
    return
}

if labelsChanged {
    oldServices, err := e.getPodServiceMemberships(oldPod)
    if err != nil {
        utilruntime.HandleError(fmt.Errorf("Unable to get pod %v/%v's service memberships: %v", oldPod.Namespace, oldPod.Name, err))
        return
    }
    services = determineNeededServiceUpdates(oldServices, services, podChangedFlag)
}

for key := range services {
    e.queue.Add(key)
}

}

func podChanged(oldPod, newPod *v1.Pod) bool {
//podChanged函数,其检测逻辑为,如果新旧两个pod的DeletionTimestamp字段不等则返回true,否则继续判断两者的就绪状态,如果不等则返回true,最后再判断新旧pod的ip、nodename、namespace、UID是否相等,如果相等则返回false,否则返回true。将返回结果赋值给podChangedFlag

// If the pod's deletion timestamp is set, remove endpoint from ready address.
if newPod.DeletionTimestamp != oldPod.DeletionTimestamp {
    return true
}
// If the pod's readiness has changed, the associated endpoint address
// will move from the unready endpoints set to the ready endpoints.
// So for the purposes of an endpoint, a readiness change on a pod
// means we have a changed pod.
if podutil.IsPodReady(oldPod) != podutil.IsPodReady(newPod) {
    return true
}
// Convert the pod to an EndpointAddress, clear inert fields,
// and see if they are the same.
newEndpointAddress := podToEndpointAddress(newPod)
oldEndpointAddress := podToEndpointAddress(oldPod)
// Ignore the ResourceVersion because it changes
// with every pod update. This allows the comparison to
// show equality if all other relevant fields match.
newEndpointAddress.TargetRef.ResourceVersion = ""
oldEndpointAddress.TargetRef.ResourceVersion = ""
if reflect.DeepEqual(newEndpointAddress, oldEndpointAddress) {
    // The pod has not changed in any way that impacts the endpoints
    return false
}
return true

}
1.4 Endpoint-Controller具体逻辑
// Run will not return until stopCh is closed. workers determines how many
// endpoints will be handled in parallel.
func (e *EndpointController) Run(workers int, stopCh <-chan struct{}) {

defer utilruntime.HandleCrash()
defer e.queue.ShutDown()

klog.Infof("Starting endpoint controller")
defer klog.Infof("Shutting down endpoint controller")

// 等待pod、service、endpoint列表同步

if !controller.WaitForCacheSync("endpoint", stopCh, e.podsSynced, e.servicesSynced, e.endpointsSynced) {
    return
}
// 这里workers数为kube-controller-manager启动参数中的--concurrent-endpoint-syncs决定,默认为5,workerLoopPeriod为1秒
for i := 0; i < workers; i++ {

// 执行worker函数,for死循环处理queue中的key

    go wait.Until(e.worker, e.workerLoopPeriod, stopCh)
}

go func() {
    defer utilruntime.HandleCrash()
    e.checkLeftoverEndpoints()
}()

<-stopCh

}

func (e *EndpointController) worker() {

for e.processNextWorkItem() {
}

}

func (e *EndpointController) processNextWorkItem() bool {

eKey, quit := e.queue.Get()
if quit {
    return false
}
defer e.queue.Done(eKey)

err := e.syncService(eKey.(string))
e.handleErr(err, eKey)

return true

}

endpointController的主要逻辑在syncService函数

func (e *EndpointController) syncService(key string) error {

startTime := time.Now()
defer func() {
    klog.V(4).Infof("Finished syncing service %q endpoints. (%v)", key, time.Since(startTime))
}()

// 根据key获取service的namespace和name

namespace, name, err := cache.SplitMetaNamespaceKey(key)
if err != nil {
    return err
}
service, err := e.serviceLister.Services(namespace).Get(name)
if err != nil {

// 如果service已经被删除,则也要删除对用的endpoint资源

    // Delete the corresponding endpoint, as the service has been deleted.
    // TODO: Please note that this will delete an endpoint when a
    // service is deleted. However, if we're down at the time when
    // the service is deleted, we will miss that deletion, so this
    // doesn't completely solve the problem. See #6877.
    err = e.client.CoreV1().Endpoints(namespace).Delete(name, nil)
    if err != nil && !errors.IsNotFound(err) {
        return err
    }
    e.triggerTimeTracker.DeleteEndpoints(namespace, name)
    return nil
}
// 如果service的.spec.selector字段为空,直接返回,endpointController不处理这种情况
if service.Spec.Selector == nil {
    // services without a selector receive no endpoints from this controller;
    // these services will receive the endpoints that are created out-of-band via the REST API.
    return nil
}

klog.V(5).Infof("About to update endpoints for service %q", key)
pods, err := e.podLister.Pods(service.Namespace).List(labels.Set(service.Spec.Selector).AsSelectorPreValidated())
if err != nil {
    // Since we're getting stuff from a local cache, it is
    // basically impossible to get this error.
    return err
}

// If the user specified the older (deprecated) annotation, we have to respect it.
tolerateUnreadyEndpoints := service.Spec.PublishNotReadyAddresses
//如果service的注解含有key为service.alpha.kubernetes.io/tolerate-unready-endpoints的值,该值为bool类型,默认tolerateUnreadyEndpoints值为false
if v, ok := service.Annotations[TolerateUnreadyEndpointsAnnotation]; ok {
    b, err := strconv.ParseBool(v)
    if err == nil {
        tolerateUnreadyEndpoints = b
    } else {
        utilruntime.HandleError(fmt.Errorf("Failed to parse annotation %v: %v", TolerateUnreadyEndpointsAnnotation, err))
    }
}

// We call ComputeEndpointsLastChangeTriggerTime here to make sure that the state of the trigger
// time tracker gets updated even if the sync turns out to be no-op and we don't update the
// endpoints object.
endpointsLastChangeTriggerTime := e.triggerTimeTracker.
    ComputeEndpointsLastChangeTriggerTime(namespace, name, service, pods)

subsets := []v1.EndpointSubset{}
var totalReadyEps int
var totalNotReadyEps int
//循环处理pod列表
for _, pod := range pods {
    // pod的podIp为空,则continue for循环
    if len(pod.Status.PodIP) == 0 {
        klog.V(5).Infof("Failed to find an IP for pod %s/%s", pod.Namespace, pod.Name)
        continue
    }
    // 如果该pod正在被删除,则continue for循环
    if !tolerateUnreadyEndpoints && pod.DeletionTimestamp != nil {

// 获取该pod的信息,输出EndpointAddress结构体变量

        klog.V(5).Infof("Pod is being deleted %s/%s", pod.Namespace, pod.Name)
        continue
    }

    epa := *podToEndpointAddress(pod)

    hostname := pod.Spec.Hostname
    // 如果pod存在hostname,则最后的FQDN为hostname.subdomain.namespace.svc.cluster.local
    if len(hostname) > 0 && pod.Spec.Subdomain == service.Name && service.Namespace == pod.Namespace {
        epa.Hostname = hostname
    }

    // Allow headless service not to have ports.
    // 允许headless service没有端口
    if len(service.Spec.Ports) == 0 {
        if service.Spec.ClusterIP == api.ClusterIPNone {

// 1、如果tolerateUnreadyEndpoints为true,允许未就绪的pod也列入Addresses列表,如果tolerateUnreadyEndpoints为false但pod状态为ready则将pod列入Addresses列表;

            // 2、检测pod的重启策略,如果重启策略为Never,pod的运行状态不为Failed且不是Succeeded,将该pod列入NotReadyAddresses,如果重启策略为OnFailure并且pod的运行状态不为Succeeded,将该pod列入NotReadyAddresses,其它情况也将该pod列入NotReadyAddresses;
            subsets, totalReadyEps, totalNotReadyEps = addEndpointSubset(subsets, pod, epa, nil, tolerateUnreadyEndpoints)
            // No need to repack subsets for headless service without ports.
        }
    } else {
        // 循环service的ports端口
        for i := range service.Spec.Ports {
            servicePort := &service.Spec.Ports[i]

            portName := servicePort.Name
            portProto := servicePort.Protocol
            portNum, err := podutil.FindPort(pod, servicePort)
            // 如果service中的port在pod中不存在,则继续for循环
            if err != nil {
                klog.V(4).Infof("Failed to find port for service %s/%s: %v", service.Namespace, service.Name, err)
                continue
            }

            var readyEps, notReadyEps int
            epp := &v1.EndpointPort{Name: portName, Port: int32(portNum), Protocol: portProto}
            subsets, readyEps, notReadyEps = addEndpointSubset(subsets, pod, epa, epp, tolerateUnreadyEndpoints)
            totalReadyEps = totalReadyEps + readyEps
            totalNotReadyEps = totalNotReadyEps + notReadyEps
        }
    }
}
// 重新整理subsets
subsets = endpoints.RepackSubsets(subsets)
// 如果endpoint不存在(通常该情况是新建一个service的情况),则新建一个,如果是其他未知错误,则返回err
// See if there's actually an update here.
currentEndpoints, err := e.endpointsLister.Endpoints(service.Namespace).Get(service.Name)
if err != nil {
    if errors.IsNotFound(err) {
        currentEndpoints = &v1.Endpoints{
            ObjectMeta: metav1.ObjectMeta{
                Name:   service.Name,
                Labels: service.Labels,
            },
        }
    } else {
        return err
    }
}
// currentEndpoints的资源版本为空时,表示要创建endpoint
createEndpoints := len(currentEndpoints.ResourceVersion) == 0
// 如果当前currentEndpoints的subset列表和重新整理后的subsets相等,并且label与service的label一致,则忽略本次更新操作
if !createEndpoints &&
    apiequality.Semantic.DeepEqual(currentEndpoints.Subsets, subsets) &&
    apiequality.Semantic.DeepEqual(currentEndpoints.Labels, service.Labels) {
    klog.V(5).Infof("endpoints are equal for %s/%s, skipping update", service.Namespace, service.Name)
    return nil
}
newEndpoints := currentEndpoints.DeepCopy()
newEndpoints.Subsets = subsets
newEndpoints.Labels = service.Labels
if newEndpoints.Annotations == nil {
    newEndpoints.Annotations = make(map[string]string)
}

if !endpointsLastChangeTriggerTime.IsZero() {
    newEndpoints.Annotations[v1.EndpointsLastChangeTriggerTime] =
        endpointsLastChangeTriggerTime.Format(time.RFC3339Nano)
} else { // No new trigger time, clear the annotation.
    delete(newEndpoints.Annotations, v1.EndpointsLastChangeTriggerTime)
}

klog.V(4).Infof("Update endpoints for %v/%v, ready: %d not ready: %d", service.Namespace, service.Name, totalReadyEps, totalNotReadyEps)
if createEndpoints {
    // 如果没有与service同命名空间和同名的endpoint,则生成新的endpoint
    // No previous endpoints, create them
    _, err = e.client.CoreV1().Endpoints(service.Namespace).Create(newEndpoints)
} else {
    // Pre-existing
    // 已经存在与service同命名空间和同名的endpoint,需要更新endpoint
    _, err = e.client.CoreV1().Endpoints(service.Namespace).Update(newEndpoints)
}
if err != nil {
    if createEndpoints && errors.IsForbidden(err) {
        // A request is forbidden primarily for two reasons:
        // 1. namespace is terminating, endpoint creation is not allowed by default.
        // 2. policy is misconfigured, in which case no service would function anywhere.
        // Given the frequency of 1, we log at a lower level.
        klog.V(5).Infof("Forbidden from creating endpoints: %v", err)
    }

    if createEndpoints {
        e.eventRecorder.Eventf(newEndpoints, v1.EventTypeWarning, "FailedToCreateEndpoint", "Failed to create endpoint for service %v/%v: %v", service.Namespace, service.Name, err)
    } else {
        e.eventRecorder.Eventf(newEndpoints, v1.EventTypeWarning, "FailedToUpdateEndpoint", "Failed to update endpoint %v/%v: %v", service.Namespace, service.Name, err)
    }

    return err
}
return nil

}
1.5 Endpoint检测
之前说的是当Endpoint和Service绑定的时候Service和Pod改变时的一系列操作,现在我们回到问题,如果Endpoint单独存在,K8S是如何检测并且删除的?
我们重新看看Run函数中的

go func() {

    defer utilruntime.HandleCrash()
    e.checkLeftoverEndpoints()
}()

K8S在运行Run函数的时候启动了一个协程去检测当前所有的Endpoint

// checkLeftoverEndpoints lists all currently existing endpoints and adds their
// service to the queue. This will detect endpoints that exist with no
// corresponding service; these endpoints need to be deleted. We only need to
// do this once on startup, because in steady-state these are detected (but
// some stragglers could have been left behind if the endpoint controller
// reboots).
func (e *EndpointController) checkLeftoverEndpoints() {
//拉取当前所有的endpoint对象

list, err := e.endpointsLister.List(labels.Everything())
if err != nil {
    utilruntime.HandleError(fmt.Errorf("Unable to list endpoints (%v); orphaned endpoints will not be cleaned up. (They're pretty harmless, but you can restart this component if you want another attempt made.)", err))
    return
}

//轮询所有endpoint

for _, ep := range list {
    if _, ok := ep.Annotations[resourcelock.LeaderElectionRecordAnnotationKey]; ok {
        // when there are multiple controller-manager instances,
        // we observe that it will delete leader-election endpoints after 5min
        // and cause re-election
        // so skip the delete here
        // as leader-election only have endpoints without service
        continue
    }
    key, err := controller.KeyFunc(ep)
    if err != nil {
        utilruntime.HandleError(fmt.Errorf("Unable to get key for endpoint %#v", ep))
        continue
    }

//假如此处endpoint没有对应的service,猜想会把endpoint的name当成key传入queue,然后在之前的逻辑中判断获取service name错误,于是删除endpoint

    e.queue.Add(key)
}

}

  1. 总结
    一句话,遇到如上问题有两种解决的方式:

创建Service的时候使用Selector,这样可以自动创建Endpoint
在创建Endpoint还需要创建Service,这样才可以持久化Endpoint

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
3月前
|
存储 Kubernetes 持续交付
介绍一下Kubernetes的应用场景
【10月更文挑战第18天】介绍一下Kubernetes的应用场景。
262 3
|
18天前
|
人工智能 运维 监控
容器服务Kubernetes场景下可观测体系生产级最佳实践
阿里云容器服务团队在2024年继续蝉联Gartner亚洲唯一全球领导者象限,其可观测体系是运维的核心能力之一。该体系涵盖重保运维、大规模集群稳定性、业务异常诊断等场景,特别是在AI和GPU场景下提供了全面的观测解决方案。通过Tracing、Metric和Log等技术,阿里云增强了对容器网络、存储及多集群架构的监控能力,帮助客户实现高效运维和成本优化。未来,结合AI助手,将进一步提升问题定位和解决效率,缩短MTTR,助力构建智能运维体系。
|
5月前
|
Kubernetes 容器 Perl
【Azure K8S】AKS升级 Kubernetes version 失败问题的分析与解决
【Azure K8S】AKS升级 Kubernetes version 失败问题的分析与解决
|
5月前
|
存储 Kubernetes API
在K8S中,etcd 适应的场景?
在K8S中,etcd 适应的场景?
|
5月前
|
运维 Kubernetes 大数据
Kubernetes 的架构问题之在Serverless Container场景下尚不支持资源超售如何解决
Kubernetes 的架构问题之在Serverless Container场景下尚不支持资源超售如何解决
74 0
|
5月前
|
存储 缓存 Kubernetes
在K8S中,有状态服务与无状态服务都是怎么使用pv和pvc?(可以通过应用场景说明一下)
在K8S中,有状态服务与无状态服务都是怎么使用pv和pvc?(可以通过应用场景说明一下)
|
5月前
|
存储 Kubernetes 监控
在K8S中,K8S本身优势、适应场景及其特点有什么?
在K8S中,K8S本身优势、适应场景及其特点有什么?
|
5月前
|
存储 Kubernetes 负载均衡
在K8S中,etcd适应的场景有哪些?
在K8S中,etcd适应的场景有哪些?
|
7月前
|
Kubernetes 监控 调度
K8S中Scheduler原理分析
【6月更文挑战第20天】K8S Scheduler是集群的关键组件,它监听API Server,为新Pod选择合适的Node。
|
7月前
|
Kubernetes 安全 测试技术
超大规模商用 K8s 场景下,阿里巴巴如何动态解决容器资源的按需分配问题?
超大规模商用 K8s 场景下,阿里巴巴如何动态解决容器资源的按需分配问题?