深入解析 Kubebuilder:让编写 CRD 变得更简单

本文涉及的产品
性能测试 PTS,5000VUM额度
云原生网关 MSE Higress,422元/月
可观测监控 Prometheus 版,每月50GB免费额度
简介: 作者 | 刘洋(炎寻) 阿里云高级开发工程师导读:自定义资源 CRD(Custom Resource Definition)可以扩展 Kubernetes API,掌握 CRD 是成为 Kubernetes 高级玩家的必备技能,本文将介绍 CRD 和 Controller 的概念,并对 CRD 编写框架 Kubebuilder 进行深入分析,让您真正理解并能快速开发 CRD。

作者 | 刘洋(炎寻) 阿里云高级开发工程师

导读:自定义资源 CRD(Custom Resource Definition)可以扩展 Kubernetes API,掌握 CRD 是成为 Kubernetes 高级玩家的必备技能,本文将介绍 CRD 和 Controller 的概念,并对 CRD 编写框架 Kubebuilder 进行深入分析,让您真正理解并能快速开发 CRD。

概览

控制器模式与声明式 API


在正式介绍 Kubebuidler 之前,我们需要先了解下 K8s 底层实现大量使用的控制器模式,以及让用户大呼过瘾的声明式 API,这是介绍 CRDs 和 Kubebuidler 的基础。

控制器模式


K8s 作为一个“容器编排”平台,其核心的功能是编排,Pod 作为 K8s 调度的最小单位,具备很多属性和字段,K8s 的编排正是通过一个个控制器根据被控制对象的属性和字段来实现。


下面我们看一个例子:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: test
spec:
  selector:
    matchLabels:
      app: test
  replicas: 2
  template:
    metadata:
      labels:
        app: test
    spec:
      containers:
      - name: nginx
        image: nginx:1.7.9
        ports:
        - containerPort: 80


K8s 集群在部署时包含了 Controllers 组件,里面对于每个 build-in 的资源类型(比如 Deployments, Statefulset, CronJob, ...)都有对应的 Controller,基本是 1:1 的关系。上面的例子中,Deployment 资源创建之后,对应的 Deployment Controller 编排动作很简单,确保携带了 app=test 的 Pod 个数永远等于 2,Pod 由 template 部分定义,具体来说,K8s 里面是 kube-controller-manager 这个组件在做这件事,可以看下 K8s 项目的 pkg/controller 目录,里面包含了所有控制器,都以独有的方式负责某种编排功能,但是它们都遵循一个通用编排模式,即:调谐循环(Reconcile loop),其伪代码逻辑为:

for {
actualState := GetResourceActualState(rsvc)
expectState := GetResourceExpectState(rsvc)
if actualState == expectState {
// do nothing
} else {
Reconcile(rsvc)
}
}


就是一个无限循环(实际是事件驱动+定时同步来实现,不是无脑循环)不断地对比期望状态和实际状态,如果有出入则进行 Reconcile(调谐)逻辑将实际状态调整为期望状态。期望状态就是我们的对象定义(通常是 YAML 文件),实际状态是集群里面当前的运行状态(通常来自于 K8s 集群内外相关资源的状态汇总),控制器的编排逻辑主要是第三步做的,这个操作被称为调谐(Reconcile),整个控制器调谐的过程称为“Reconcile Loop”,调谐的最终结果一般是对被控制对象的某种写操作,比如增/删/改 Pod。


在控制器中定义被控制对象是通过“模板”完成的,比如 Deployment 里面的 template 字段里的内容跟一个标准的 Pod 对象的 API 定义一样,所有被这个 Deployment 管理的 Pod 实例,都是根据这个 template 字段的创建的,这就是 PodTemplate,一个控制对象的定义一般是由上半部分的控制定义(期望状态),加上下半部分的被控制对象的模板组成。

声明式 API

所谓声明式就是“告诉 K8s 你要什么,而不是告诉它怎么做的命令”,一个很熟悉的例子就是 SQL,你“告诉 DB 根据条件和各类算子返回数据,而不是告诉它怎么遍历,过滤,聚合”。在 K8s 里面,声明式的体现就是 kubectl apply 命令,在对象创建和后续更新中一直使用相同的 apply 命令,告诉 K8s 对象的终态即可,底层是通过执行了一个对原有 API 对象的 PATCH 操作来实现的,可以一次性处理多个写操作,具备 Merge 能力 diff 出最终的 PATCH,而命令式一次只能处理一个写请求。
 
声明式 API 让 K8s 的“容器编排”世界看起来温柔美好,而控制器(以及容器运行时,存储,网络模型等)才是这太平盛世的幕后英雄。说到这里,就会有人希望也能像 build-in 资源一样构建自己的自定义资源(CRD-Customize Resource Definition),然后为自定义资源写一个对应的控制器,推出自己的声明式 API。K8s 提供了 CRD 的扩展方式来满足用户这一需求,而且由于这种扩展方式十分灵活,在最新的 1.15 版本对 CRD 做了相当大的增强。对于用户来说,实现 CRD 扩展主要做两件事:

1.编写 CRD 并将其部署到 K8s 集群里;

这一步的作用就是让 K8s 知道有这个资源及其结构属性,在用户提交该自定义资源的定义时(通常是 YAML 文件定义),K8s 能够成功校验该资源并创建出对应的 Go struct 进行持久化,同时触发控制器的调谐逻辑。

2.编写 Controller 并将其部署到 K8s 集群里。

这一步的作用就是实现调谐逻辑。


Kubebuilder 就是帮我们简化这两件事的工具,现在我们开始介绍主角。

Kubebuilder 是什么?

摘要

Kubebuilder 是一个使用 CRDs 构建 K8s API 的 SDK,主要是:

  • 提供脚手架工具初始化 CRDs 工程,自动生成 boilerplate 代码和配置;
  • 提供代码库封装底层的 K8s go-client;


方便用户从零开始开发 CRDs,Controllers 和 Admission Webhooks 来扩展 K8s。

核心概念

GVKs&GVRs

GVK = GroupVersionKind,GVR = GroupVersionResource。

API Group & Versions(GV)

API Group 是相关 API 功能的集合,每个 Group 拥有一或多个 Versions,用于接口的演进。

Kinds & Resources

每个 GV 都包含多个 API 类型,称为 Kinds,在不同的 Versions 之间同一个 Kind 定义可能不同, Resource 是 Kind 的对象标识(resource type),一般来说 Kinds 和 Resources 是 1:1 的,比如 pods Resource 对应 Pod Kind,但是有时候相同的 Kind 可能对应多个 Resources,比如 Scale Kind 可能对应很多 Resources:deployments/scale,replicasets/scale,对于 CRD 来说,只会是 1:1 的关系。
 
每一个 GVK 都关联着一个 package 中给定的 root Go type,比如 apps/v1/Deployment 就关联着 K8s 源码里面 k8s.io/api/apps/v1 package 中的 Deployment struct,我们提交的各类资源定义 YAML 文件都需要写:

  • apiVersion:这个就是 GV 。
  • kind:这个就是 K。


根据 GVK K8s 就能找到你到底要创建什么类型的资源,根据你定义的 Spec 创建好资源之后就成为了 Resource,也就是 GVR。GVK/GVR 就是 K8s 资源的坐标,是我们创建/删除/修改/读取资源的基础。

Scheme

每一组 Controllers 都需要一个 Scheme,提供了 Kinds 与对应 Go types 的映射,也就是说给定 Go type 就知道他的 GVK,给定 GVK 就知道他的 Go type,比如说我们给定一个 Scheme: "tutotial.kubebuilder.io/api/v1".CronJob{} 这个 Go type 映射到 batch.tutotial.kubebuilder.io/v1 的 CronJob GVK,那么从 Api Server 获取到下面的 JSON:


{
    "kind": "CronJob",
    "apiVersion": "batch.tutorial.kubebuilder.io/v1",
    ...
}


就能构造出对应的 Go type了,通过这个 Go type 也能正确地获取 GVR 的一些信息,控制器可以通过该 Go type 获取到期望状态以及其他辅助信息进行调谐逻辑。

Manager

Kubebuilder 的核心组件,具有 3 个职责:

  • 负责运行所有的 Controllers;
  • 初始化共享 caches,包含 listAndWatch 功能;
  • 初始化 clients 用于与 Api Server 通信。

Cache

Kubebuilder 的核心组件,负责在 Controller 进程里面根据 Scheme 同步 Api Server 中所有该 Controller 关心 GVKs 的 GVRs,其核心是 GVK -> Informer 的映射,Informer 会负责监听对应 GVK 的 GVRs 的创建/删除/更新操作,以触发 Controller 的 Reconcile 逻辑。

Controller

Kubebuidler 为我们生成的脚手架文件,我们只需要实现 Reconcile 方法即可。

Clients

在实现 Controller 的时候不可避免地需要对某些资源类型进行创建/删除/更新,就是通过该 Clients 实现的,其中查询功能实际查询是本地的 Cache,写操作直接访问 Api Server。

Index

由于 Controller 经常要对 Cache 进行查询,Kubebuilder 提供 Index utility 给 Cache 加索引提升查询效率。

Finalizer

在一般情况下,如果资源被删除之后,我们虽然能够被触发删除事件,但是这个时候从 Cache 里面无法读取任何被删除对象的信息,这样一来,导致很多垃圾清理工作因为信息不足无法进行,K8s 的 Finalizer 字段用于处理这种情况。在 K8s 中,只要对象 ObjectMeta 里面的 Finalizers 不为空,对该对象的 delete 操作就会转变为 update 操作,具体说就是 update  deletionTimestamp 字段,其意义就是告诉 K8s 的 GC“在deletionTimestamp 这个时刻之后,只要 Finalizers 为空,就立马删除掉该对象”。


所以一般的使用姿势就是在创建对象时把 Finalizers 设置好(任意 string),然后处理 DeletionTimestamp 不为空的 update 操作(实际是 delete),根据 Finalizers 的值执行完所有的 pre-delete hook(此时可以在 Cache 里面读取到被删除对象的任何信息)之后将 Finalizers 置为空即可。

OwnerReference

K8s GC 在删除一个对象时,任何 ownerReference 是该对象的对象都会被清除,与此同时,Kubebuidler 支持所有对象的变更都会触发 Owner 对象 controller 的 Reconcile 方法。


所有概念集合在一起如图 1 所示:


b1

图 1-Kubebuilder 核心概念
 

Kubebuilder 怎么用?

1. 创建脚手架工程

kubebuilder init --domain edas.io

这一步创建了一个 Go module 工程,引入了必要的依赖,创建了一些模板文件。

2. 创建 API 

kubebuilder create api --group apps --version v1alpha1 --kind Application


这一步创建了对应的 CRD 和 Controller 模板文件,经过 1、2 两步,现有的工程结构如图 2 所示:


b2

图 2-Kubebuilder 生成的工程结构说明

3. 定义 CRD

在图 2 中对应的文件定义 Spec 和 Status。

4. 编写 Controller 逻辑

在图 3 中对应的文件实现 Reconcile 逻辑。

5. 测试发布

本地测试完之后使用 Kubebuilder 的 Makefile 构建镜像,部署我们的 CRDs 和 Controller 即可。

Kubebuilder 出现的意义?

让扩展 K8s 变得更简单,K8s 扩展的方式很多,Kubebuilder 目前专注于 CRD 扩展方式。
 

深入

在使用 Kubebuilder 的过程中有些问题困扰着我:

  • 如何同步自定义资源以及 K8s build-in 资源?
  • Controller 的 Reconcile 方法是如何被触发的?
  • Cache 的工作原理是什么?
  • ...


带着这些问题我们去看看源码 :D。

源码阅读

从 main.go 开始

Kubebuilder 创建的 main.go 是整个项目的入口,逻辑十分简单:

var (
    scheme   = runtime.NewScheme()
    setupLog = ctrl.Log.WithName("setup")
)
func init() {
    appsv1alpha1.AddToScheme(scheme)
    // +kubebuilder:scaffold:scheme
}
func main() {
    ...
        // 1、init Manager
    mgr, err := ctrl.NewManager(ctrl.GetConfigOrDie(), ctrl.Options{Scheme: scheme, MetricsBindAddress: metricsAddr})
    if err != nil {
        setupLog.Error(err, "unable to start manager")
        os.Exit(1)
    }
        // 2、init Reconciler(Controller)
    err = (&controllers.ApplicationReconciler{
        Client: mgr.GetClient(),
        Log:    ctrl.Log.WithName("controllers").WithName("Application"),
        Scheme: mgr.GetScheme(),
    }).SetupWithManager(mgr)
    if err != nil {
        setupLog.Error(err, "unable to create controller", "controller", "EDASApplication")
        os.Exit(1)
    }
    // +kubebuilder:scaffold:builder
    setupLog.Info("starting manager")
        // 3、start Manager
    if err := mgr.Start(ctrl.SetupSignalHandler()); err != nil {
        setupLog.Error(err, "problem running manager")
        os.Exit(1)
    }


可以看到在 init 方法里面我们将 appsv1alpha1 注册到 Scheme 里面去了,这样一来 Cache 就知道 watch 谁了,main 方法里面的逻辑基本都是 Manager 的:

  1. 初始化了一个 Manager;
  2. 将 Manager 的 Client 传给 Controller,并且调用 SetupWithManager 方法传入 Manager 进行 Controller 的初始化;
  3. 启动 Manager。


我们的核心就是看这 3 个流程。

Manager 初始化

Manager 初始化代码如下:

// New returns a new Manager for creating Controllers.
func New(config *rest.Config, options Options) (Manager, error) {
    ...
    // Create the cache for the cached read client and registering informers
    cache, err := options.NewCache(config, cache.Options{Scheme: options.Scheme, Mapper: mapper, Resync: options.SyncPeriod, Namespace: options.Namespace})
    if err != nil {
        return nil, err
    }
    apiReader, err := client.New(config, client.Options{Scheme: options.Scheme, Mapper: mapper})
    if err != nil {
        return nil, err
    }
    writeObj, err := options.NewClient(cache, config, client.Options{Scheme: options.Scheme, Mapper: mapper})
    if err != nil {
        return nil, err
    }
    ...
    return &controllerManager{
        config:           config,
        scheme:           options.Scheme,
        errChan:          make(chan error),
        cache:            cache,
        fieldIndexes:     cache,
        client:           writeObj,
        apiReader:        apiReader,
        recorderProvider: recorderProvider,
        resourceLock:     resourceLock,
        mapper:           mapper,
        metricsListener:  metricsListener,
        internalStop:     stop,
        internalStopper:  stop,
        port:             options.Port,
        host:             options.Host,
        leaseDuration:    *options.LeaseDuration,
        renewDeadline:    *options.RenewDeadline,
        retryPeriod:      *options.RetryPeriod,
    }, nil
}


可以看到主要是创建 Cache 与 Clients:

创建 Cache

Cache 初始化代码如下:

// New initializes and returns a new Cache.
func New(config *rest.Config, opts Options) (Cache, error) {
    opts, err := defaultOpts(config, opts)
    if err != nil {
        return nil, err
    }
    im := internal.NewInformersMap(config, opts.Scheme, opts.Mapper, *opts.Resync, opts.Namespace)
    return &informerCache{InformersMap: im}, nil
}
// newSpecificInformersMap returns a new specificInformersMap (like
// the generical InformersMap, except that it doesn't implement WaitForCacheSync).
func newSpecificInformersMap(...) *specificInformersMap {
    ip := &specificInformersMap{
        Scheme:            scheme,
        mapper:            mapper,
        informersByGVK:    make(map[schema.GroupVersionKind]*MapEntry),
        codecs:            serializer.NewCodecFactory(scheme),
        resync:            resync,
        createListWatcher: createListWatcher,
        namespace:         namespace,
    }
    return ip
}
// MapEntry contains the cached data for an Informer
type MapEntry struct {
    // Informer is the cached informer
    Informer cache.SharedIndexInformer
    // CacheReader wraps Informer and implements the CacheReader interface for a single type
    Reader CacheReader
}
func createUnstructuredListWatch(gvk schema.GroupVersionKind, ip *specificInformersMap) (*cache.ListWatch, error) {
        ...
    // Create a new ListWatch for the obj
    return &cache.ListWatch{
        ListFunc: func(opts metav1.ListOptions) (runtime.Object, error) {
            if ip.namespace != "" && mapping.Scope.Name() != meta.RESTScopeNameRoot {
                return dynamicClient.Resource(mapping.Resource).Namespace(ip.namespace).List(opts)
            }
            return dynamicClient.Resource(mapping.Resource).List(opts)
        },
        // Setup the watch function
        WatchFunc: func(opts metav1.ListOptions) (watch.Interface, error) {
            // Watch needs to be set to true separately
            opts.Watch = true
            if ip.namespace != "" && mapping.Scope.Name() != meta.RESTScopeNameRoot {
                return dynamicClient.Resource(mapping.Resource).Namespace(ip.namespace).Watch(opts)
            }
            return dynamicClient.Resource(mapping.Resource).Watch(opts)
        },
    }, nil
}


可以看到 Cache 主要就是创建了 InformersMap,Scheme 里面的每个 GVK 都创建了对应的 Informer,通过 informersByGVK 这个 map 做 GVK 到 Informer 的映射,每个 Informer 会根据 ListWatch 函数对对应的 GVK 进行 List 和 Watch。

创建 Clients

创建 Clients 很简单:

// defaultNewClient creates the default caching client
func defaultNewClient(cache cache.Cache, config *rest.Config, options client.Options) (client.Client, error) {
    // Create the Client for Write operations.
    c, err := client.New(config, options)
    if err != nil {
        return nil, err
    }
    return &client.DelegatingClient{
        Reader: &client.DelegatingReader{
            CacheReader:  cache,
            ClientReader: c,
        },
        Writer:       c,
        StatusClient: c,
    }, nil
}


读操作使用上面创建的 Cache,写操作使用 K8s go-client 直连。

Controller 初始化

下面看看 Controller 的启动:

func (r *EDASApplicationReconciler) SetupWithManager(mgr ctrl.Manager) error {
    err := ctrl.NewControllerManagedBy(mgr).
        For(&appsv1alpha1.EDASApplication{}).
        Complete(r)
return err
}


使用的是 Builder 模式,NewControllerManagerBy 和 For 方法都是给 Builder 传参,最重要的是最后一个方法 Complete,其逻辑是:

func (blder *Builder) Build(r reconcile.Reconciler) (manager.Manager, error) {
...
    // Set the Manager
    if err := blder.doManager(); err != nil {
        return nil, err
    }
    // Set the ControllerManagedBy
    if err := blder.doController(r); err != nil {
        return nil, err
    }
    // Set the Watch
    if err := blder.doWatch(); err != nil {
        return nil, err
    }
...
    return blder.mgr, nil
}


主要是看看 doController 和 doWatch 方法:

doController 方法

func New(name string, mgr manager.Manager, options Options) (Controller, error) {
    if options.Reconciler == nil {
        return nil, fmt.Errorf("must specify Reconciler")
    }
    if len(name) == 0 {
        return nil, fmt.Errorf("must specify Name for Controller")
    }
    if options.MaxConcurrentReconciles <= 0 {
        options.MaxConcurrentReconciles = 1
    }
    // Inject dependencies into Reconciler
    if err := mgr.SetFields(options.Reconciler); err != nil {
        return nil, err
    }
    // Create controller with dependencies set
    c := &controller.Controller{
        Do:                      options.Reconciler,
        Cache:                   mgr.GetCache(),
        Config:                  mgr.GetConfig(),
        Scheme:                  mgr.GetScheme(),
        Client:                  mgr.GetClient(),
        Recorder:                mgr.GetEventRecorderFor(name),
        Queue:                   workqueue.NewNamedRateLimitingQueue(workqueue.DefaultControllerRateLimiter(), name),
        MaxConcurrentReconciles: options.MaxConcurrentReconciles,
        Name:                    name,
    }
    // Add the controller as a Manager components
    return c, mgr.Add(c)
}


该方法初始化了一个 Controller,传入了一些很重要的参数:

  • Do:Reconcile 逻辑;
  • Cache:找 Informer 注册 Watch;
  • Client:对 K8s 资源进行 CRUD;
  • Queue:Watch 资源的 CUD 事件缓存;
  • Recorder:事件收集。

doWatch 方法

func (blder *Builder) doWatch() error {
    // Reconcile type
    src := &source.Kind{Type: blder.apiType}
    hdler := &handler.EnqueueRequestForObject{}
    err := blder.ctrl.Watch(src, hdler, blder.predicates...)
    if err != nil {
        return err
    }
    // Watches the managed types
    for _, obj := range blder.managedObjects {
        src := &source.Kind{Type: obj}
        hdler := &handler.EnqueueRequestForOwner{
            OwnerType:    blder.apiType,
            IsController: true,
        }
        if err := blder.ctrl.Watch(src, hdler, blder.predicates...); err != nil {
            return err
        }
    }
    // Do the watch requests
    for _, w := range blder.watchRequest {
        if err := blder.ctrl.Watch(w.src, w.eventhandler, blder.predicates...); err != nil {
            return err
        }
    }
    return nil
}


可以看到该方法对本 Controller 负责的 CRD 进行了 watch,同时底下还会 watch 本 CRD 管理的其他资源,这个 managedObjects 可以通过 Controller 初始化 Buidler 的 Owns 方法传入,说到 Watch 我们关心两个逻辑:

  1. 注册的 handler
type EnqueueRequestForObject struct{}
// Create implements EventHandler
func (e *EnqueueRequestForObject) Create(evt event.CreateEvent, q workqueue.RateLimitingInterface) {
        ...
    q.Add(reconcile.Request{NamespacedName: types.NamespacedName{
        Name:      evt.Meta.GetName(),
        Namespace: evt.Meta.GetNamespace(),
    }})
}
// Update implements EventHandler
func (e *EnqueueRequestForObject) Update(evt event.UpdateEvent, q workqueue.RateLimitingInterface) {
    if evt.MetaOld != nil {
        q.Add(reconcile.Request{NamespacedName: types.NamespacedName{
            Name:      evt.MetaOld.GetName(),
            Namespace: evt.MetaOld.GetNamespace(),
        }})
    } else {
        enqueueLog.Error(nil, "UpdateEvent received with no old metadata", "event", evt)
    }
    if evt.MetaNew != nil {
        q.Add(reconcile.Request{NamespacedName: types.NamespacedName{
            Name:      evt.MetaNew.GetName(),
            Namespace: evt.MetaNew.GetNamespace(),
        }})
    } else {
        enqueueLog.Error(nil, "UpdateEvent received with no new metadata", "event", evt)
    }
}
// Delete implements EventHandler
func (e *EnqueueRequestForObject) Delete(evt event.DeleteEvent, q workqueue.RateLimitingInterface) {
        ...
    q.Add(reconcile.Request{NamespacedName: types.NamespacedName{
        Name:      evt.Meta.GetName(),
        Namespace: evt.Meta.GetNamespace(),
    }})
}


可以看到 Kubebuidler 为我们注册的 Handler 就是将发生变更的对象的 NamespacedName 入队列,如果在 Reconcile 逻辑中需要判断创建/更新/删除,需要有自己的判断逻辑。

  1. 注册的流程
// Watch implements controller.Controller
func (c *Controller) Watch(src source.Source, evthdler handler.EventHandler, prct ...predicate.Predicate) error {
    ...
    log.Info("Starting EventSource", "controller", c.Name, "source", src)
    return src.Start(evthdler, c.Queue, prct...)
}
// Start is internal and should be called only by the Controller to register an EventHandler with the Informer
// to enqueue reconcile.Requests.
func (is *Informer) Start(handler handler.EventHandler, queue workqueue.RateLimitingInterface,
    ...
    is.Informer.AddEventHandler(internal.EventHandler{Queue: queue, EventHandler: handler, Predicates: prct})
    return nil
}


我们的 Handler 实际注册到 Informer 上面,这样整个逻辑就串起来了,通过 Cache 我们创建了所有 Scheme 里面 GVKs 的 Informers,然后对应 GVK 的 Controller 注册了 Watch Handler 到对应的 Informer,这样一来对应的 GVK 里面的资源有变更都会触发 Handler,将变更事件写到 Controller 的事件队列中,之后触发我们的 Reconcile 方法。

Manager 启动

func (cm *controllerManager) Start(stop <-chan struct{}) error {
    ...
    go cm.startNonLeaderElectionRunnables()
    ...
}
func (cm *controllerManager) startNonLeaderElectionRunnables() {
    ...
    // Start the Cache. Allow the function to start the cache to be mocked out for testing
    if cm.startCache == nil {
        cm.startCache = cm.cache.Start
    }
    go func() {
        if err := cm.startCache(cm.internalStop); err != nil {
            cm.errChan <- err
        }
    }()
        ...
        // Start Controllers
    for _, c := range cm.nonLeaderElectionRunnables {
        ctrl := c
        go func() {
            cm.errChan <- ctrl.Start(cm.internalStop)
        }()
    }
    cm.started = true
}


主要就是启动 Cache,Controller,将整个事件流运转起来,我们下面来看看启动逻辑。

Cache 启动

func (ip *specificInformersMap) Start(stop <-chan struct{}) {
    func() {
        ...
        // Start each informer
        for _, informer := range ip.informersByGVK {
            go informer.Informer.Run(stop)
        }
    }()
}
func (s *sharedIndexInformer) Run(stopCh <-chan struct{}) {
        ...
        // informer push resource obj CUD delta to this fifo queue
    fifo := NewDeltaFIFO(MetaNamespaceKeyFunc, s.indexer)
    cfg := &Config{
        Queue:            fifo,
        ListerWatcher:    s.listerWatcher,
        ObjectType:       s.objectType,
        FullResyncPeriod: s.resyncCheckPeriod,
        RetryOnError:     false,
        ShouldResync:     s.processor.shouldResync,
                // handler to process delta
        Process: s.HandleDeltas,
    }
    func() {
        s.startedLock.Lock()
        defer s.startedLock.Unlock()
                // this is internal controller process delta generate by reflector
        s.controller = New(cfg)
        s.controller.(*controller).clock = s.clock
        s.started = true
    }()
        ...
    wg.StartWithChannel(processorStopCh, s.processor.run)
    s.controller.Run(stopCh)
}
func (c *controller) Run(stopCh <-chan struct{}) {
    ...
    r := NewReflector(
        c.config.ListerWatcher,
        c.config.ObjectType,
        c.config.Queue,
        c.config.FullResyncPeriod,
    )
    ...
        // reflector is delta producer
    wg.StartWithChannel(stopCh, r.Run)
        // internal controller's processLoop is comsume logic
    wait.Until(c.processLoop, time.Second, stopCh)
}


Cache 的初始化核心是初始化所有的 Informer,Informer 的初始化核心是创建了 reflector 和内部 controller,reflector 负责监听 Api Server 上指定的 GVK,将变更写入 delta 队列中,可以理解为变更事件的生产者,内部 controller 是变更事件的消费者,他会负责更新本地 indexer,以及计算出 CUD 事件推给我们之前注册的 Watch Handler。

Controller 启动

// Start implements controller.Controller
func (c *Controller) Start(stop <-chan struct{}) error {
    ...
    for i := 0; i < c.MaxConcurrentReconciles; i++ {
        // Process work items
        go wait.Until(func() {
            for c.processNextWorkItem() {
            }
        }, c.JitterPeriod, stop)
    }
    ...
}
func (c *Controller) processNextWorkItem() bool {
    ...
    obj, shutdown := c.Queue.Get()
    ...
    var req reconcile.Request
    var ok bool
    if req, ok = obj.(reconcile.Request); 
        ...
    // RunInformersAndControllers the syncHandler, passing it the namespace/Name string of the
    // resource to be synced.
    if result, err := c.Do.Reconcile(req); err != nil {
        c.Queue.AddRateLimited(req)
        ...
    } 
        ...
}


Controller 的初始化是启动 goroutine 不断地查询队列,如果有变更消息则触发到我们自定义的 Reconcile 逻辑。

整体逻辑串连


上面我们通过源码阅读已经十分清楚整个流程,但是正所谓一图胜千言,我制作了一张整体逻辑串连图(图 3)来帮助大家理解:


b3

图 3-Kubebuidler 整体逻辑串连图


Kubebuilder 作为脚手架工具已经为我们做了很多,到最后我们只需要实现 Reconcile 方法即可,这里不再赘述。

守得云开见月明

刚开始使用 Kubebuilder 的时候,因为封装程度很高,很多事情都是懵逼状态,剖析完之后很多问题就很明白了,比如开头提出的几个:

  • 如何同步自定义资源以及 K8s build-in 资源?

需要将自定义资源和想要 Watch 的 K8s build-in 资源的 GVKs 注册到 Scheme 上,Cache 会自动帮我们同步。

  • Controller 的 Reconcile 方法是如何被触发的?

通过 Cache 里面的 Informer 获取资源的变更事件,然后通过两个内置的 Controller 以生产者消费者模式传递事件,最终触发 Reconcile 方法。

  • Cache 的工作原理是什么?

GVK -> Informer 的映射,Informer 包含 Reflector 和 Indexer 来做事件监听和本地缓存。


还有很多问题我就不一一说了,总之,现在 Kubebuilder 现在不再是黑盒。

同类工具对比

Operator Framework 与 Kubebuilder 很类似,这里因为篇幅关系不再展开。

最佳实践

模式

1.使用 OwnerRefrence 来做资源关联,有两个特性:

  • Owner 资源被删除,被 Own 的资源会被级联删除,这利用了 K8s 的 GC;
  • 被 Own 的资源对象的事件变更可以触发 Owner 对象的 Reconcile 方法;

2.使用 Finalizer 来做资源的清理。

注意点

  • 不使用 Finalizer 时,资源被删除无法获取任何信息;
  • 对象的 Status 字段变化也会触发 Reconcile 方法;
  • Reconcile 逻辑需要幂等;

优化

使用 IndexFunc 来优化资源查询的效率
 

总结

通过深入分析,我们可以看到 Kubebuilder 提供的功能对于快速编写 CRD 和 Controller 是十分有帮助的,无论是 Istio、Knative 等知名项目还是各种自定义 Operators,都大量使用了 CRD,将各种组件抽象为 CRD,Kubernetes 变成控制面板将成为一个趋势,希望本文能够帮助大家理解和把握这个趋势。


“ 阿里巴巴云原生微信公众号(ID:Alicloudnative)关注微服务、Serverless、容器、Service Mesh等技术领域、聚焦云原生流行技术趋势、云原生大规模的落地实践,做最懂云原生开发者的技术公众号。”

相关文章
|
4月前
|
JSON Kubernetes API
深入理解Kubernetes配置:编写高效的YAML文件
深入理解Kubernetes配置:编写高效的YAML文件
|
5月前
|
缓存 Kubernetes 监控
kubebuilder operator的运行逻辑
kubebuilder operator的运行逻辑
58 0
|
4月前
|
XML JSON 数据格式
YAML语言介绍
YAML语言介绍
29 0
|
5月前
|
Kubernetes API 容器
在K8S中,deployment的yaml文件如何编写呢?
在K8S中,deployment的yaml文件如何编写呢?
|
6月前
|
存储 Kubernetes API
apisix~为自定义插件设计一个configmap脚本
Kubernetes ConfigMap*是一种资源对象,用于存储非敏感配置数据,如环境变量和配置文件,解耦配置与应用,支持动态更新。它可以被挂载到Pod中,跨Namespace共享。通过`kubectl create configmap`命令创建。例如,一个apisix插件配置可能包含3个lua文件,通过`kubectl create configmap`命令将它们整合到一个ConfigMap中供apisix使用。ConfigMap不同于Secret,用于存储非敏感信息。
|
8月前
|
Kubernetes Go API
|
Kubernetes API Docker
kubernetes Operator 【2】实战CRD编程
kubernetes Operator 【2】实战CRD编程
kubernetes Operator 【2】实战CRD编程
|
JSON Kubernetes 安全
Kubernetes Admission Controller 简介 - 注入 sidacar 示例
Kubernetes Admission Controller 简介 - 注入 sidacar 示例
141 0
|
JSON 数据格式
|
XML 存储 JSON