解读人工智能、大数据和云计算的关系,大佬们赌AI竟都输了?

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 人工智能(Artificial Intelligence,AI)、大数据(Big Data)和云计算(Cloud Computing)是当前最受关注的技术,业内常常取这三个技术英文名的首字母将其合称为ABC。

导读:人工智能(Artificial Intelligence,AI)、大数据(Big Data)和云计算(Cloud Computing)是当前最受关注的技术,业内常常取这三个技术英文名的首字母将其合称为ABC。

最近10年,资本和媒体对这三种技术的热度按时间排序依次为:云计算、大数据和人工智能。事实上,若按照技术出现的时间排序,结果正好相反,人工智能出现最早,大数据其次,云计算则出现得最晚。

由于每种技术都能应用于各个领域,因此人们可以从不同的角度分别解读每种技术。作为同时在研发和使用这三种技术的机构负责人,作者将尝试从大数据的角度解释ABC的关系,并且阐述这三种技术对于企业、机构和人类社会的重要性。

作者:冯雷 姚延栋 高小明 杨瑜

如需转载请联系大数据(ID:hzdashuju)

image.png

人工智能是计算机科学的一个分支,它的主要研究目标是用计算机程序来表示人类智能。这个词最早是在1956年的达特茅斯会议上正式提出的。在达特茅斯会议正式提出“人工智能”这个概念之前,图灵和早期的计算机科学家一般用“机器智能”这个词。

需要强调的是,人工智能是建立在计算机之上。不管人工智能应用多么美妙和复杂,在图灵眼里都是图灵机上的一个程序(或者叫作可计算数,具体参考《从图灵机、图灵测试到人工智能:什么决定了AI能否取代人类?》)。

人工智能课程的主要目的是学习建立在模型之上的算法。这些算法和其他计算机领域的算法并无太大区别,只是这类算法专注在如图1-3所示的智能主体(Intelligent Agent)里面的模型。在人工智能领域,计算机科学家们试图建立模型使得智能主体能够观察周围环境并做出行动,就像人类的行为那样。

image.png

▲图1-3 智能主体作为AI的主要研究对象

最近5年,由于智能主体模型在无人驾驶、聊天机器人和计算机视觉识别等应用的准确率的提升,人工智能的应用热度也随之提升。AlphaGo等棋类对弈让人工智能被公众津津乐道,因为计算资源和计算能力的提升,在限定时间内,对弈模型比人类棋手更具优势,这也引发了很多关于人工智能的讨论。

01 AI的发展史

自远古时代,人类一直希望能够创造一种类似于人类智能的机器,将人类从乏味的重复劳动中解放出来。

直到1936年,计算机科学的鼻祖图灵发表了名为《论可计算数》的论文,机器模拟人类智能的哲学话题才转变成一个可以像数学学科那样被论证的课题。在论文中,图灵构造了假想的机器来模仿人类。电影《模仿游戏》讲述的就是图灵如何构造假想的机器(计算机)来模仿人类的故事。

在那个时代,人工智能的概念还没有提出,人们更多地使用“机器智能”这个词来讨论计算机带来的智能。简单地说,图灵的论文证明了机器可以模仿人类智能,所以今天的无人驾驶、聊天机器人、棋类对弈和计算机视觉识别等应用都是图灵预见的,虽然他那时并没有足够的硬件条件测试这些应用。

在图灵提出图灵机后,多个机构便开始设计真正意义上的遵循通用图灵机模型架构的存储程序计算机(Stored-program Computer)。虽然第一台存储程序计算机(后文称作现代计算机)是谁先发明的至今仍有争议,但是影响较大的是冯·诺依曼提出的EDVAC(Electronic Discrete Variable Automatic Computer)。冯·诺依曼在后来也确认现代计算机的核心设计思想是受到通用图灵机的启发。

现代计算机发明以后,各种应用如雨后春笋一样蓬勃发展,但是真正把人工智能作为一个应用方向提出来还是在1956年的达特茅斯会议。

在20世纪40年代末现代计算机被发明后,从20世纪50年代开始,各个领域都开始关于“思考机器”(Thinking Machines)的讨论。各个领域的用词和方法的不同带来了很多混淆。于是,达特茅斯学院(Dartmouth College)年轻的助理教授麦卡锡(John McCarthy)决定召集一个会议澄清思考机器这个话题。

召集这样的会议需要赞助,聪明的麦卡锡找到了他在IBM公司的朋友罗切斯特(Nathaniel Rochester)和在普林斯顿大学的朋友闵斯基(Marvin Minsky)以及大师香农一起在1955年写了一份项目倡议。在倡议中,他使用了人工智能(Artificial Intelligence)这个词,避免和已经有的“思考机器”一词混淆。

这里值得一提的是闵斯基,麦卡锡和闵斯基后来在麻省理工学院领导了AI实验室,成就了麻省理工学院在人工智能领域首屈一指的地位。

会议在1956年举行,这里必须提到另外两位短期的参会者,来自卡内基·梅隆大学的纽厄尔(Alan Newell)和司马贺(Hubert Simon)。他们虽然只呆了一个礼拜,但是他们的报告中公布的一款程序“逻辑理论家”(Logic Theorist)代表了人工智能的另外一条路线。因为纽厄尔和司马贺的奠基工作,卡内基·梅隆大学成为人工智能的另一个重镇。

image.png

02 对AI应用的正确预期

达特茅斯会议的意义在于确立了“人工智能”(AI)作为计算机科学的一个研究领域,自那以后,AI在机器视觉、自然语言处理、无人驾驶等领域取得了长足发展。但是,“人工智能”这个概念常常被过度消费。过去,美国的学者用这个概念来申请政府研究经费,今天有不少公司用这个概念来从资本市场募资。

但实际上,AI的进展并不像很多人预言的那样乐观。

就棋类对弈而言,司马贺在20世纪50年代末就预言计算机能打败人类,但没有实现;20世纪60年代末,麦卡锡打赌说计算机将在10年内打败人类,结果他输了;国际象棋程序深蓝在“限定时间内”胜出人类直到20世纪90年代末才实现。围棋程序AlphaGo在“限定时间内”胜出人类则是在2017年实现的。

闵斯基在20世纪80年代末预言,二十年内可以解决自然语言处理问题,时至今日,各种AI应用在自然语言处理方面尚有极大差距。

如今的“无人驾驶”在商用中实际上更多起到“辅助驾驶”的作用,因为在实际的使用中仍出现过意外情况,从保证行车安全的角度,尚不能实现真正的“无人驾驶”。

人工智能最近一次的持续升温是被包括大数据和云计算在内的软硬件技术持续发展使得很多应用得以落地而驱动的(我们将在下一节中讨论ABC的关系)。从历史经验来看,也许是由于大众媒体和科幻电影的影响,AI界有种过于乐观的倾向。

但实际上,我们对于AI模型的精度应该抱有十分谨慎的态度,因为我们构建的神经网络在内的很多AI模型本质上还是经验模型,并不是一个严格的逻辑证明。这些模型的精度比起古典力学模型精度还差了很多。即使是古典力学模型,在微观量子世界也是失效的,所以对于这些模型的使用范围也要持谨慎态度。

当然,我们也不能对建立在经验模型上的AI应用持过度怀疑的态度,因为我们的大部分知识来自经验,事实证明,这些知识也是实用的。所以,AI是一个在不断前进的领域。

人工智能另外一个层面的讨论是机器能否超越人类?这个问题是令我们对于人工智能感到不安的原因。从计算机发明的第一天,图灵和其他伟大的数学家们就已经对这个话题进行过深入的讨论。

与大众传媒不同,数学家和计算机科学家们对这个问题的讨论是深层次的数学和逻辑层面的讨论。《从图灵机、图灵测试到人工智能:什么决定了AI能否取代人类?》着重讨论AI和人的关系,有决心探究这一问题的读者可以参考这篇文章。

image.png

03 ABC之间的关系

前面已经解释了ABC的概念,这里我们来讨论一下ABC之间的重要内在关系以及这些内在关系带来的可以赋能于商业的巨大技术产能。从技术角度上看,ABC之间有以下两层重要关系:

大量数据输入到大数据系统,从而改善大数据系统里建立的机器学习模型。

云计算提供的算力使得普通机构也可以在今天用大数据系统计算大量数据从而获得AI能力。

先看第一层关系。谷歌研究院的F. Pereira、P. Norvig和A. Halevy发表了一篇文章《数据的奇效》,解释了如何通过大量数据提高机器学习模型的准确率。早在谷歌之前,微软研究院的Michele Banko和Eric Brill在他们的论文《扩展到非常非常大文本来去除自然语言歧义》中,展示了使用海量数据后各个机器模型的准确率都有大幅度提高,如图1-6所示。

这一结论为机器学习和人工智能的问题求解指出了一个新方向:用大量数据和大数据计算来提高人工智能。对比一下自然语言翻译在最近10年因为利用大数据和计算所带来的进展,读者就能感觉到这种力量。

image.png

▲图1-6 用海量数据后各个机器模型的准确率都有大幅度提高

再看第二层关系。云计算带来的巨大好处就是提供商品化的计算资源,以前只有政府机构和大型企业才能拥有的巨大计算资源,现在可以被一个创业公司所拥有。这个从量变到质变的过程使得我们可以重新审视一些计算机行业的难题。

计算资源的丰富使得大数据技术能够以更低的门槛被使用。云计算平民化了大数据技术,使得大数据技术被企业广泛采用,企业也利用大数据养成了保管数据的习惯,把数据当作未被开采的资源。大数据的普及给人工智能的分支——机器学习带来了意想不到的惊喜。

综合前面讨论的ABC的内在含义,当前的机器学习、人工智能可以朝着以下两个方向前进:

设计新的机器学习模型,在前人的模型上有所创新,改进模型效果。

使用已有的机器学习模型,但是利用前人所没有的数据量和云计算带来的计算能力来改进模型效果。

谷歌公司的Norvig曾经说过“我们没有更好的算法,但是有更多的数据”。显然,Norvig鼓励按第二种方法进行创新,当然,这不意味着用第一种方法创新不重要。但需要指出的是,第一种方法的创新门槛要远高于第二种,除了世界顶级的机构,普通机构很难拥有相应的资金、人才及配套的管理和文化来支撑第一种创新方法。

第二种方法对于传统的机构也是可以重复和实践的,按照已经有的方法论、成功案例和人才培训可以实现基于大数据和机器学习的高阶数字化转型。

前面讨论的ABC的关系可以总结成图1-7。云计算从量变到质变带来前所未有和平民化的计算资源。企业和互联网在数字化应用方面产生了大量的数据。这些数据和计算能力使得大数据技术普及到普通机构,而这些机构利用大数据来创建和改善现有的机器学习模型,带来更好的人工智能成效。

image.png

▲图1-7 ABC之间的关系

AI带来的社会影响可能超过前三次技术革命。随着科技和商业不断推动AI技术前进,AI和人之间的关系是技术领袖、商业领袖和政策制定者们不得不思考的问题。

前面关于AI和人的关系的大部分讨论都没有系统化和逻辑化,因而不是一个学术讨论,《从图灵机、图灵测试到人工智能:什么决定了AI能否取代人类?》则会在邱奇和图灵的学术讨论上回顾并延伸到AI和人的讨论。这部分讨论非常硬科学但是对于那些有兴趣深入思考AI技术和人类关系的读者或者希望跳出AI框架内应用创新而成为系统创新者的读者,啃啃这根硬骨头定有“会当凌绝顶,一览众山小”的感觉。

本文摘编自《Greenplum:从大数据战略到实现》,经出版方授权发布。

文章来源:微信公众号 大数据

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
29天前
|
机器学习/深度学习 数据采集 人工智能
深入探索人工智能与大数据的融合之路
本文旨在探讨人工智能(AI)与大数据技术如何相互促进,共同推动现代科技的进步。通过分析两者结合的必要性、挑战以及未来趋势,为读者提供一个全面的视角,理解这一领域内的最新发展动态及其对行业的影响。文章不仅回顾了历史背景,还展望了未来可能带来的变革,并提出了几点建议以促进更高效的技术整合。
|
1天前
|
数据采集 人工智能 分布式计算
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
阿里云推出的MaxFrame是链接大数据与AI的分布式Python计算框架,提供类似Pandas的操作接口和分布式处理能力。本文从部署、功能验证到实际场景全面评测MaxFrame,涵盖分布式Pandas操作、大语言模型数据预处理及企业级应用。结果显示,MaxFrame在处理大规模数据时性能显著提升,代码兼容性强,适合从数据清洗到训练数据生成的全链路场景...
12 5
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
|
1天前
|
人工智能 自动驾驶 机器人
AI元年:2024年人工智能发展大事纪
3分钟了解2024年人工智能AI领域都发生了哪些改变我们生活和生产方式的大事儿。
37 2
AI元年:2024年人工智能发展大事纪
|
1天前
|
人工智能 自然语言处理 算法
打破AI信息差:2024年20款好用的人工智能工具大盘点
本文带你了解20款值得一试的AI工具,帮助你在内容创作、图像设计、音频视频编辑等领域提高效率、激发创意。
29 1
打破AI信息差:2024年20款好用的人工智能工具大盘点
|
8天前
|
存储 人工智能 数据管理
|
27天前
|
机器学习/深度学习 人工智能 运维
人工智能在云计算中的运维优化:智能化的新时代
人工智能在云计算中的运维优化:智能化的新时代
128 49
|
5天前
|
人工智能 安全 搜索推荐
新手指南:人工智能poe ai 怎么用?国内使用poe记住这个方法就够了!
由于国内网络限制,许多用户在尝试访问Poe AI时面临障碍。幸运的是,现在国内用户也能轻松畅玩Poe AI,告别繁琐的设置,直接开启AI创作之旅!🎉
49 13
|
3天前
|
人工智能 分布式计算 数据处理
MaxCompute Data + AI:构建 Data + AI 的一体化数智融合
本次分享将分为四个部分讲解:第一部分探讨AI时代数据开发范式的演变,特别是MaxCompute自研大数据平台在客户工作负载和任务类型变化下的影响。第二部分介绍MaxCompute在资源大数据平台上构建的Data + AI核心能力,提供一站式开发体验和流程。第三部分展示MaxCompute Data + AI的一站式开发体验,涵盖多模态数据管理、交互式开发环境及模型训练与部署。第四部分分享成功落地的客户案例及其收益,包括互联网公司和大模型训练客户的实践,展示了MaxFrame带来的显著性能提升和开发效率改进。
|
23天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
1天前
|
存储 人工智能 数据管理
媒体声音|专访阿里云数据库周文超博士:AI就绪的智能数据平台设计思路
在生成式AI的浪潮中,数据的重要性日益凸显。大模型在实际业务场景的落地过程中,必须有海量数据的支撑:经过训练、推理和分析等一系列复杂的数据处理过程,才能最终产生业务价值。事实上,大模型本身就是数据处理后的产物,以数据驱动的决策与创新需要通过更智能的平台解决数据多模处理、实时分析等问题,这正是以阿里云为代表的企业推动 “Data+AI”融合战略的核心动因。

热门文章

最新文章