Kubernetes 弹性伸缩全场景解读(五) - 定时伸缩组件发布与开源

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
容器镜像服务 ACR,镜像仓库100个 不限时长
可观测可视化 Grafana 版,10个用户账号 1个月
简介: 前言 容器技术的发展让软件交付和运维变得更加标准化、轻量化、自动化。这使得动态调整负载的容量变成一件非常简单的事情。在 Kubernetes 中,通常只需要修改对应的 replicas 数目即可完成。


c1

作者| 阿里云容器技术专家刘中巍(莫源)

导读:Kubernetes弹性伸缩系列文章为读者一一解析了各个弹性伸缩组件的相关原理和用法。本篇文章中,阿里云容器技术专家莫源将为你带来定时伸缩组件  kubernetes-cronhpa-controller  的相关介绍与具体操作,目前该组件已经正式开源,欢迎大家一起交流探讨。

前言


容器技术的发展让软件交付和运维变得更加标准化、轻量化、自动化。这使得动态调整负载的容量变成一件非常简单的事情。在 Kubernetes 中,通常只需要修改对应的 replicas 数目即可完成。当负载的容量调整变得如此简单后,我们再回过头来看下应用的资源画像。


对于大部分互联网的在线应用而言,负载的峰谷分布是存在一定规律的。例如下图是一个典型 web 应用的负载曲线。从每天早上 8 点开始,负载开始飙高,在中午 12 点到 14 点之间,负载会回落;14 点到 18 点会迎来第二个高峰;在 18 点之后负载会逐渐回落到最低点。



c1




资源的波峰和波谷之间相差 3~4 倍左右的容量,低负载的时间会维持 8 个小时左右。如果使用纯静态的容量规划方式进行应用管理与部署,我们可以计算得出资源浪费比为 25% (计算方式: 1 - (18+416)/424 = 0.25 )。而当波峰和波谷之间的差别到达 10 倍的时候,资源浪费比就会飙升至 57% (计算方式: 1 - (18+1016)/1024 = 0.57 )。


那么当我们面对这么多的资源浪费时,是否可以通过弹性的方式来解决呢?


标准的 HPA 是基于指标阈值进行伸缩的,常见的指标主要是 CPU、内存,当然也可以通过自定义指标例如 QPS、连接数等进行伸缩。但是这里存在一个问题:基于资源的伸缩存在一定的时延,这个时延主要包含:采集时延(分钟级) + 判断时延(分钟级) + 伸缩时延(分钟级)。而对于上图中,我们可以发现负载的峰值毛刺还是非常尖锐的,这有可能会由于 HPA 分钟级别的伸缩时延造成负载数目无法及时变化,短时间内应用的整体负载飙高,响应时间变慢。特别是对于一些游戏业务而言,由于负载过高带来的业务抖动会造成玩家非常差的体验。


为了解决这个场景,阿里云容器服务提供了 kube-cronhpa-controller,专门应对资源画像存在周期性的场景。开发者可以根据资源画像的周期性规律,定义 time schedule,提前扩容好资源,而在波谷到来后定时回收资源。底层再结合 cluster-autoscaler 的节点伸缩能力,提供资源成本的节约。

使用方式


cronhpa 是基于 CRD 的方式开发的 controller,使用 cronhpa 的方式非常简单,整体的使用习惯也尽可能的和 HPA 保持一致。代码仓库地址

1. 安装 CRD

kubectl apply -f config/crds/autoscaling_v1beta1_cronhorizontalpodautoscaler.yaml

2. 安装 RBAC 授权

# create ClusterRole 
kubectl apply -f config/rbac/rbac_role.yaml
# create ClusterRolebinding and ServiceAccount 
kubectl apply -f config/rbac/rbac_role_binding.yaml

3. 部署 kubernetes-cronhpa-controller

kubectl apply -f config/deploy/deploy.yaml

4. 验证 kubernetes-cronhpa-controller 安装状态

kubectl get deploy kubernetes-cronhpa-controller -n kube-system -o wide 
kubernetes-cronhpa-controller git:(master)  kubectl get deploy kubernetes-cronhpa-controller -n kube-system
NAME                            DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
kubernetes-cronhpa-controller   1         1         1            1           49s

运行一个 cronhpa 的 demo


安装了 kubernetes-cronhpa-controller 后,我们可以通过一个简单的 demo 进行功能的验证。在部署前,我们先看下一个标准的 cronhpa 的定义。

apiVersion: autoscaling.alibabacloud.com/v1beta1
kind: CronHorizontalPodAutoscaler
metadata:
  labels:
    controller-tools.k8s.io: "1.0"
  name: cronhpa-sample
  namespace: default 
spec:
   scaleTargetRef:
      apiVersion: apps/v1beta2
      kind: Deployment
      name: nginx-deployment-basic
   jobs:
   - name: "scale-down"
     schedule: "30 */1 * * * *"
     targetSize: 1
   - name: "scale-up"
     schedule: "0 */1 * * * *"
     targetSize: 3


其中 scaleTargetRef 字段负责描述伸缩的对象,jobs 中定义了扩展的 crontab 定时任务。在这个例子中,设定的是每分钟的第 0 秒扩容到 3 个 Pod,每分钟的第 30s 缩容到 1 个 Pod。如果执行正常,我们可以在 30s 内看到负载数目的两次变化。

1. 部署 demo 应用与 cronhpa 的配置

kubectl apply -f examples/deployment_cronhpa.yaml

2. 检查 demo 应用副本数目

kubectl get deploy nginx-deployment-basic 
kubernetes-cronhpa-controller git:(master)  kubectl get deploy nginx-deployment-basic
NAME                     DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
nginx-deployment-basic   2         2         2            2           9s

3. 查看 cronhpa 的状态 ,确认 cronhpa 的 job 已提交

kubectl describe cronhpa cronhpa-sample 
Name:         cronhpa-sample
Namespace:    default
Labels:       controller-tools.k8s.io=1.0
Annotations:  kubectl.kubernetes.io/last-applied-configuration:
                {"apiVersion":"autoscaling.alibabacloud.com/v1beta1","kind":"CronHorizontalPodAutoscaler","metadata":{"annotations":{},"labels":{"controll...
API Version:  autoscaling.alibabacloud.com/v1beta1
Kind:         CronHorizontalPodAutoscaler
Metadata:
  Creation Timestamp:  2019-04-14T10:42:38Z
  Generation:          1
  Resource Version:    4017247
  Self Link:           /apis/autoscaling.alibabacloud.com/v1beta1/namespaces/default/cronhorizontalpodautoscalers/cronhpa-sample
  UID:                 05e41c95-5ea2-11e9-8ce6-00163e12e274
Spec:
  Jobs:
    Name:         scale-down
    Schedule:     30 */1 * * * *
    Target Size:  1
    Name:         scale-up
    Schedule:     0 */1 * * * *
    Target Size:  3
  Scale Target Ref:
    API Version:  apps/v1beta2
    Kind:         Deployment
    Name:         nginx-deployment-basic
Status:
  Conditions:
    Job Id:           38e79271-9a42-4131-9acd-1f5bfab38802
    Last Probe Time:  2019-04-14T10:43:02Z
    Message:
    Name:             scale-down
    Schedule:         30 */1 * * * *
    State:            Submitted
    Job Id:           a7db95b6-396a-4753-91d5-23c2e73819ac
    Last Probe Time:  2019-04-14T10:43:02Z
    Message:
    Name:             scale-up
    Schedule:         0 */1 * * * *
    State:            Submitted
Events:               <none>

4. 等待一段时间,查看 cronhpa 的运行状态。

kubernetes-cronhpa-controller git:(master) kubectl describe cronhpa cronhpa-sample
Name:         cronhpa-sample
Namespace:    default
Labels:       controller-tools.k8s.io=1.0
Annotations:  kubectl.kubernetes.io/last-applied-configuration:
                {"apiVersion":"autoscaling.alibabacloud.com/v1beta1","kind":"CronHorizontalPodAutoscaler","metadata":{"annotations":{},"labels":{"controll...
API Version:  autoscaling.alibabacloud.com/v1beta1
Kind:         CronHorizontalPodAutoscaler
Metadata:
  Creation Timestamp:  2019-04-15T06:41:44Z
  Generation:          1
  Resource Version:    15673230
  Self Link:           /apis/autoscaling.alibabacloud.com/v1beta1/namespaces/default/cronhorizontalpodautoscalers/cronhpa-sample
  UID:                 88ea51e0-5f49-11e9-bd0b-00163e30eb10
Spec:
  Jobs:
    Name:         scale-down
    Schedule:     30 */1 * * * *
    Target Size:  1
    Name:         scale-up
    Schedule:     0 */1 * * * *
    Target Size:  3
  Scale Target Ref:
    API Version:  apps/v1beta2
    Kind:         Deployment
    Name:         nginx-deployment-basic
Status:
  Conditions:
    Job Id:           84818af0-3293-43e8-8ba6-6fd3ad2c35a4
    Last Probe Time:  2019-04-15T06:42:30Z
    Message:          cron hpa job scale-down executed successfully
    Name:             scale-down
    Schedule:         30 */1 * * * *
    State:            Succeed
    Job Id:           f8579f11-b129-4e72-b35f-c0bdd32583b3
    Last Probe Time:  2019-04-15T06:42:20Z
    Message:
    Name:             scale-up
    Schedule:         0 */1 * * * *
    State:            Submitted
Events:
  Type    Reason   Age   From                            Message
  ----    ------   ----  ----                            -------
  Normal  Succeed  5s    cron-horizontal-pod-autoscaler  cron hpa job scale-down executed successfully


此时可以在 event 中发现负载的定时伸缩已经生效。

最后


kubernetes-cronhpa-controller 可以很好的解决拥有周期性资源画像的负载弹性,结合底层的 cluster-autoscaler 可以降低大量的资源成本。目前 kubernetes-cronhpa-controller 已经正式开源,更详细的用法与文档请查阅代码仓库的文档,欢迎开发者提交 issue 与 pr。

Kubernetes 弹性伸缩系列文章目录



扫描下方二维码添加小助手,与 8000 位云原生爱好者讨论技术趋势,实战进阶!进群暗号:公司-岗位-城市

d3

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
1月前
|
Ubuntu 网络安全 容器
KubeSphere 是一个开源的容器平台,提供丰富的功能和便捷的操作界面,适用于企业容器化部署和管理
KubeSphere 是一个开源的容器平台,提供丰富的功能和便捷的操作界面,适用于企业容器化部署和管理。本文详细介绍了如何在 Ubuntu 22.04 上安装 KubeSphere,包括系统要求、安装依赖项、设置防火墙、下载安装脚本、选择安装选项、验证安装结果等步骤,并提供了常见问题的解决方法。希望本文能为读者提供实用的参考和帮助。
36 3
|
1月前
|
Kubernetes 安全 容器
关于K8s,不错的开源工具
【10月更文挑战第12天】
|
3月前
|
Linux pouch 容器
CentOS7部署阿里巴巴开源的pouch容器管理工具实战
关于如何在CentOS 7.6操作系统上安装和使用阿里巴巴开源的Pouch容器管理工具的实战教程。
141 2
|
5月前
|
Kubernetes 持续交付 Python
Kubernetes(通常简称为K8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。
Kubernetes(通常简称为K8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。
|
7月前
|
Kubernetes 关系型数据库 分布式数据库
【PolarDB开源】PolarDB与Kubernetes集成:容器化部署的最佳实践
【5月更文挑战第21天】本文介绍了将阿里云的高性能数据库PolarDB与容器编排工具Kubernetes集成的步骤。首先,需准备Kubernetes集群和PolarDB Docker镜像,安装Helm。然后,通过Helm部署PolarDB,设置存储类和副本数。接着,应用配置PolarDB连接信息,打包成Docker镜像并在K8s集群中部署。此外,调整PolarDB参数以优化性能,并使用Prometheus和Grafana监控。本文为PolarDB在Kubernetes中的最佳实践提供了指导。
203 4
|
7月前
|
存储 Kubernetes 容器
【开源推荐】k8s备份神器--Velero
【5月更文挑战第2天】
281 0
|
7月前
|
JSON Kubernetes 网络架构
Kubernetes CNI 网络模型及常见开源组件
【4月更文挑战第13天】目前主流的容器网络模型是CoreOS 公司推出的 Container Network Interface(CNI)模型
|
7月前
|
Kubernetes 监控 容器
K8S故障注入混沌工程开源平台ChaosMesh
总之,ChaosMesh作为一个Kubernetes混沌工程平台,为用户提供了测试和验证Kubernetes集群的可靠性的工具和框架,有助于提高系统的稳定性和性能。
257 0
|
7月前
|
Kubernetes 网络协议 网络架构
「译文」比较开源 k8s LoadBalancer-MetalLB vs PureLB vs OpenELB
「译文」比较开源 k8s LoadBalancer-MetalLB vs PureLB vs OpenELB
|
7月前
|
Kubernetes Cloud Native 网络协议
云原生|kubernetes部署和运行维护中的错误汇总(不定时更新)
云原生|kubernetes部署和运行维护中的错误汇总(不定时更新)
2216 0

相关产品

  • 容器服务Kubernetes版