电商客户运营攻略:人人都可以做数据营销(基础篇)

简介: 不论你在哪个岗位,都需要透过数据,去真正客观地了解业务现状、了解市场、了解对手,更了解自己。
在数据驱动精准运营趋势下,做电商的不会点数据分析怎么行呢?不论你在哪个岗位,都需要透过数据,去真正客观地了解业务现状、了解市场、了解对手,更了解自己。今天,网聚宝数据分析师给大家分享几种常用的数据分析思维方法和应用场景,希望可以给到各位电商运营同学一些启发,通过数据洞察,找到适合的符合自身店铺特点的运营方法。后续,我们也会陆续分享更多洞察数据的方法。

CRM入门级 新手必会的数据分析

基础1 新老客占比分析 ——你的流量还好吗?

6d42a22809daaee6e4215a2362a136adca94dba1

横轴(时间维度):付款日期 2015.12-2017.2期间

纵轴(会员量):会员数 

对比维度:

  1. 红色趋势线代表老客户,即入店购买2次以上的客户
  2. 蓝色趋势线代表新客户,即入店购买1次的客户
分析这些数据我们发现:2015.12-2016.1老客户数量在增长,新客数量下降。那为什么会出现这样的情况呢?

思考方向:
  • 是否是拉新引流活动没有做好?
  • 是否是双11、双12的活动透支了客户的购买力?
基础2 会员复购率分析 ——你的老客给力吗?

64cf2d741899775d695772b840ac13c0220a7892

横轴维度:会员数(百分比)、付款金额 求和(百分比)

纵轴维度:总购买次数(1/2/3/4/5/6/7) 

时间维度:2014.1.1-2017.2.1

从数据中可以看出,购买1次的新客的会员量占比63.79%,他们的付款金额占比86%,新客的人均贡献>老客户。那为什么会出现这一情况?这个数据走势是好?还是坏呢?

思考方向:
  1. 吸引新客的是什么?是商品?是价格?
  2. 老客回购少?是商品特性问题?还是老客经验策略问题?
基础3 各商品复购分析 ——运营的锅还是商品的锅?

42b145e84c82f3c81210a94188828c81d425adc0

横轴维度:会员数(百分比)

纵轴维度:总购买次数(1/2/3/4/5/6/7) 

对比维度:类目

时间维度:2014.1.1-2017.2.1

洞察发现,购买商品A的新客户,二次回店购买率>购买商品B和C的新客户。不同的类目回购率不同。但相似的类目如果有较大差异,原因是什么?是由于产品本身特性造成的?还是运营策略方面导致的?

思考方向:
  1. 是商品布置的问题吗?
  2. 如果给买了商品B的会员推荐组合(包含商品B和商品A),这样用户如果回来复购商品B可能就会连带着买了组合,从此成为高回购类目A的用户,这样他们的复购率也能有所提高。
基础4 会员商品排行购买次数对比——哪些商品是常客们的心头好?

8c01171559953362c0a63c2069471d2aefa52334
横轴维度:商品名称

纵轴维度:会员数(百分比)

对比维度:总购买次数(1次/2次/3次/4次以上)

时间维度:2016-11-11~2016-11-11

这些数据让我们能够洞察客户的商品偏好。哪些商品适合新客?哪些商品向第2次进店客户推荐转化更高?哪些商品是常客们的心头好?从而调整店铺商品陈列布局,调整对不同人群的营销及推荐策略。

思考方向:
  1. 是否是商品的店铺布局问题
  2. 是否需要调整营销策略
基础5 各个生命层级的会员商品排 —— 客户“挂”在哪个商品上

58419ef8e2cf4f72a2fc47e8769cfa71c3df26e6

横轴维度:商品名称

纵轴维度:会员数(百分比)

筛选条件:付款日期距今日分别为:0~30;30~60;60~90;90~120
处于不同活跃度的客户,都在买哪些商品?比如沉睡客户,他们的最后付款时间正好处于双十一前,也就是购买了这些商品后,双十一都没有唤醒他们,那是不是这些商品导致他们流失?

思考方向:
  • 调整商品的店铺布局
  • 调整对不同人群的营销策略
  • 是否放弃“死亡”商品
  • 以此类推根据各个城市的会员商品排行、各个客单价的会员商品排行等数据洞察进行精准营销
作者:网聚宝分析师
目录
相关文章
AI与电商API的融合:开启智能推荐与精准营销新时代
人工智能(AI)与电商API的深度融合,正推动电商行业迈入智能推荐与精准营销的新时代。通过智能推荐系统、个性化服务、业务流程自动化等应用,AI助力电商平台提升运营效率、优化用户体验,并驱动商业模式创新。然而,数据安全、模型偏差和技术迭代等挑战亟待解决。未来,随着算法优化、自动化深化及跨平台支持加强,AI与电商API将为行业带来更多智能化、个性化的解决方案,开启电商发展的新篇章。
电商API:数据驱动的营销利器
电商 API 是连接系统与平台的技术桥梁,助力企业实现数据驱动营销。它可实时获取商品、订单及用户行为数据,打破数据孤岛,支持动态化和智能化营销活动。通过整合多渠道数据,企业能优化页面布局、调整广告策略并提升转化率。同时,API 可自动化营销流程,如触发个性化邮件或折扣推送。实际应用中,某时尚电商利用订单 API 提升促销响应率 40%,另一家电品牌借助库存 API 解决超卖问题。未来,AI 融合将推动预测性、计算机视觉和 AR 试穿等智能 API 的发展,隐私计算技术也将保障跨企业数据合作的安全合规。
61 4
API如何赋能电商营销:自动化促销活动生成
在电商竞争中,API通过自动化促销活动生成,实现精准营销与高效运营,提升转化率与用户体验。
64 0
“电商API数据赋能:实时分析,优化营销策略”
电商API通过实时数据交互赋能企业,优化营销策略与运营效率。其核心价值体现在动态定价、个性化推荐及促销效果追踪等场景,助力企业快速响应市场变化。技术上依赖数据聚合、实时计算框架与A/B测试,同时需应对数据延迟、接口稳定性及合规性挑战。未来,AI与API深度融合将推动预测性分析和智能决策,为企业带来更大竞争优势。
62 1
销售易NeoCRM:以客户洞察驱动精准营销与高效服务
在竞争激烈的商业环境中,CRM行业正经历深刻变革。企业要脱颖而出,关键在于深化客户洞察。通过360度全生命周期管理、掌握详细客户档案、及时跟进重要客户和快速推进销售进程,企业能精准把握需求,提供个性化服务,提升满意度与忠诚度,驱动业务增长。CRM系统整合多渠道数据,助力企业制定针对性策略,优化客户体验,实现可持续发展。
【AI问爱答-双十一返场周】第一场营销电商视频
【AI问爱答-双十一返场周】第一场营销电商视频聚焦双11期间京东电商与营销领域的AI应用。本期探讨大语言模型、Stable Diffusion等技术,介绍PAI工具如何简化AI应用搭建,并邀请中科深智CEO成维忠分享数字人技术在直播带货中的成功案例。关注AI问爱答,扫码了解更多AI技术和促销内容。
淘宝商品数据洞察:解锁精准营销新策略
在快速变化的商业环境中,高效的营销策略对企业至关重要。通过API获取淘宝APP的商品细节数据,企业可以精准分析产品特性、强化卖点,并制定灵活的价格策略。利用用户画像实现个性化营销,选择最佳渠道并优化内容,从而提升品牌影响力。这一方法不仅帮助企业抓住目标消费者,还能增强市场竞争力,促进长期发展。
R语言营销数据分析:使用R进行客户分群的实践探索
【9月更文挑战第1天】R语言以其强大的数据处理和统计分析能力,在金融数据分析、营销数据分析等多个领域发挥着重要作用。通过R语言进行客户分群,企业可以更好地理解客户需求,制定精准的营销策略,提升市场竞争力和客户满意度。未来,随着大数据和人工智能技术的不断发展,R语言在营销数据分析中的应用将更加广泛和深入。
Struts 2携手AngularJS与React:探索企业级后端与现代前端框架的完美融合之道
【8月更文挑战第31天】随着Web应用复杂性的提升,前端技术日新月异。AngularJS和React作为主流前端框架,凭借强大的数据绑定和组件化能力,显著提升了开发动态及交互式Web应用的效率。同时,Struts 2 以其出色的性能和丰富的功能,成为众多Java开发者构建企业级应用的首选后端框架。本文探讨了如何将 Struts 2 与 AngularJS 和 React 整合,以充分发挥前后端各自优势,构建更强大、灵活的 Web 应用。
135 0
【电商数据分析利器】SQL实战项目大揭秘:手把手教你构建用户行为分析系统,从数据建模到精准营销的全方位指南!
【8月更文挑战第31天】随着电商行业的快速发展,用户行为分析的重要性日益凸显。本实战项目将指导你使用 SQL 构建电商平台用户行为分析系统,涵盖数据建模、采集、处理与分析等环节。文章详细介绍了数据库设计、测试数据插入及多种行为分析方法,如购买频次统计、商品销售排名、用户活跃时间段分析和留存率计算,帮助电商企业深入了解用户行为并优化业务策略。通过这些步骤,你将掌握利用 SQL 进行大数据分析的关键技术。
626 0

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问