独家 | 教你使用简单神经网络和LSTM进行时间序列预测(附代码)

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
云原生网关 MSE Higress,422元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: 作者基于波动性标准普尔500数据集和Keras深度学习网络框架,利用python代码演示RNN和LSTM RNN的构建过程,便于你快速搭建时间序列的预测模型。

翻译:张玲

校对:丁楠雅

文章来源:微信公众号 数据派THU

本文约1500字,建议阅读5分钟。


作者基于波动性标准普尔500数据集和Keras深度学习网络框架,利用python代码演示RNN和LSTM RNN的构建过程,便于你快速搭建时间序列的预测模型。

image.png

图片来源:Pixabay

本文的目的是演示人工神经网络(Artificial Neural Network ,ANN)和长短期记忆循环神经网络(Long Short-Term Memory Recurrent Neural Network ,LSTM RNN)工作过程,使您能够在现实生活中使用它们,并对时间序列数据建立最简单的ANN和LSTM循环神经网络。

人工神经网络(Artificial Neural Network ,ANN)

https://en.wikipedia.org/wiki/Artificial_neural_network

长短期记忆循环神经网络(Long Short-Term Memory Recurrent Neural Network ,LSTM RNN)

https://en.wikipedia.org/wiki/Long_short-term_memory

数据

CBOE(Chicago Board Options Exchange,芝加哥期权交易所)波动性指数是用来衡量标准普尔500指数期权的一种常用隐含波动率,以其代号VIX(Volatility Index,也称“恐惧指数”)而闻名。

CBOE(Chicago Board Options Exchange,芝加哥期权交易所)波动性指数

https://en.wikipedia.org/wiki/VIX

芝加哥期权交易所CBOE实时计算出VIX指数后,将其推出。

芝加哥期权交易所

https://en.wikipedia.org/wiki/Chicago_Board_Options_Exchange

可以从这里(https://ca.finance.yahoo.com/quote/%5Evix/history?ltr=1)下载波动性标准普尔500数据集,时间范围是:2011年2月11日至2019年2月11日。我的目标是采用ANN和LSTM来预测波动性标准普尔500时间序列。

首先,我们需要导入以下库:

import pandas as pd

import numpy as np

%matplotlib inline

import matplotlib.pyplot as plt

from sklearn.preprocessing import MinMaxScaler

from sklearn.metrics import r2_score

from keras.models import Sequential

from keras.layers import Dense

from keras.callbacks import EarlyStopping

from keras.optimizers import Adam

from keras.layers import LSTM

并将数据加载到Pandas 的dataframe中。

df = pd.read_csv("vix_2011_2019.csv")

我们可以快速浏览前几行。

print(df.head())

image.png

删除不需要的列,然后将“日期”列转换为时间数据类型,并将“日期”列设置为索引。

df.drop(['Open', 'High', 'Low', 'Close', 'Volume'], axis=1, inplace=True)

df['Date'] = pd.to_datetime(df['Date'])

df = df.set_index(['Date'], drop=True)

df.head(10)

image.png

接下来,我们绘制一个时间序列线图。

plt.figure(figsize=(10, 6))

df['Adj Close'].plot();

image.png

可以看出,“Adj close”数据相当不稳定,既没有上升趋势,也没有下降趋势。

按日期“2018–01–01”将数据拆分为训练集和测试集,即在此日期之前的数据是训练数据,此之后的数据是测试数据,我们再次将其可视化。

split_date = pd.Timestamp('2018-01-01')

df = df['Adj Close']

train = df.loc[:split_date]

test = df.loc[split_date:]

plt.figure(figsize=(10, 6))

ax = train.plot()

test.plot(ax=ax)

plt.legend(['train', 'test']);

image.png

我们将训练和测试数据缩放为[-1,1]。

scaler = MinMaxScaler(feature_range=(-1, 1))

train_sc = scaler.fit_transform(train)

test_sc = scaler.transform(test)

获取训练和测试数据。

X_train = train_sc[:-1]

y_train = train_sc[1:]

X_test = test_sc[:-1]

y_test = test_sc[1:]

用于时间序列预测的简单人工神经网络

我们创建一个序列模型。

通过.add()方法添加层。

将“input_dim”参数传递到第一层。

激活函数为线性整流函数Relu(Rectified Linear Unit,也称校正线性单位)。

通过compile方法完成学习过程的配置。

损失函数是mean_squared_error,优化器是Adam。

当监测到loss停止改进时,结束训练。

patience =2,表示经过数个周期结果依旧没有改进,此时可以结束训练。

人工神经网络的训练时间为100个周期,每次用1个样本进行训练。

nn_model = Sequential()

nn_model.add(Dense(12, input_dim=1, activation='relu'))

nn_model.add(Dense(1))

nn_model.compile(loss='mean_squared_error', optimizer='adam')

early_stop = EarlyStopping(monitor='loss', patience=2, verbose=1)

history = nn_model.fit(X_train, y_train, epochs=100, batch_size=1, verbose=1, callbacks=[early_stop], shuffle=False)

image.png

我不会把整个输出结果打印出来,它早在第19个周期就停了下来。

y_pred_test_nn = nn_model.predict(X_test)

y_train_pred_nn = nn_model.predict(X_train)

print("The R2 score on the Train set is:\t{:0.3f}".format(r2_score(y_train, y_train_pred_nn)))

print("The R2 score on the Test set is:\t{:0.3f}".format(r2_score(y_test, y_pred_test_nn)))

image.png

LSTM

LSTM网络的构建和模型编译和人工神经网络相似。

LSTM有一个可见层,它有1个输入。

隐藏层有7个LSTM神经元。

输出层进行单值预测。

LSTM神经元使用Relu函数进行激活。

LSTM的训练时间为100个周期,每次用1个样本进行训练。

lstm_model = Sequential()

lstm_model.add(LSTM(7, input_shape=(1, X_train_lmse.shape[1]), activation='relu', kernel_initializer='lecun_uniform', return_sequences=False))

lstm_model.add(Dense(1))

lstm_model.compile(loss='mean_squared_error', optimizer='adam')

early_stop = EarlyStopping(monitor='loss', patience=2, verbose=1)

history_lstm_model = lstm_model.fit(X_train_lmse, y_train, epochs=100, batch_size=1, verbose=1, shuffle=False, callbacks=[early_stop])

image.png

训练早在第10个周期就停了下来。

y_pred_test_lstm = lstm_model.predict(X_test_lmse)

y_train_pred_lstm = lstm_model.predict(X_train_lmse)

print("The R2 score on the Train set is:t{:0.3f}".format(r2_score(y_train, y_train_pred_lstm)))

print("The R2 score on the Test set is:t{:0.3f}".format(r2_score(y_test, y_pred_test_lstm)))

image.png

训练和测试R^2均优于人工神经网络模型。

比较模型

我们比较了两种模型的测试MSE

nn_test_mse = nn_model.evaluate(X_test, y_test, batch_size=1)

lstm_test_mse = lstm_model.evaluate(X_test_lmse, y_test, batch_size=1)

print('NN: %f'%nn_test_mse)

print('LSTM: %f'%lstm_test_mse)

image.png

进行预测

nn_y_pred_test = nn_model.predict(X_test)

lstm_y_pred_test = lstm_model.predict(X_test_lmse)

plt.figure(figsize=(10, 6))

plt.plot(y_test, label='True')

plt.plot(y_pred_test_nn, label='NN')

plt.title("NN's Prediction")

plt.xlabel('Observation')

plt.ylabel('Adj Close Scaled')

plt.legend()

plt.show();

image.png

plt.figure(figsize=(10, 6))

plt.plot(y_test, label='True')

plt.plot(y_pred_test_lstm, label='LSTM')

plt.title("LSTM's Prediction")

plt.xlabel('Observation')

plt.ylabel('Adj Close scaled')

plt.legend()

plt.show();

image.png

就是这样!在这篇文章中,我们发现了如何采用python语言基于Keras深度学习网络框架,开发用于时间序列预测的人工神经网络和LSTM循环神经网络,以及如何利用它们更好地预测时间序列数据。

原文标题:

An Introduction on Time Series Forecasting with Simple Neural Networks & LSTM

原文链接:

https://www.kdnuggets.com/2019/04/introduction-time-series-forecasting-simple-neural-networks-lstm.html

编辑:王菁

校对:龚力

译者简介

张玲,在岗数据分析师,计算机硕士毕业。从事数据工作,需要重塑自我的勇气,也需要终生学习的毅力。但我依旧热爱它的严谨,痴迷它的艺术。数据海洋一望无境,数据工作充满挑战。感谢数据派THU提供如此专业的平台,希望在这里能和最专业的你们共同进步!

翻译组招募信息

工作内容:将选取好的外文前沿文章准确地翻译成流畅的中文。如果你是数据科学/统计学/计算机专业的留学生,或在海外从事相关工作,或对自己外语水平有信心的朋友,数据派翻译组欢迎你们加入!

你能得到:提高对于数据科学前沿的认知,提高对外文新闻来源渠道的认知,海外的朋友可以和国内技术应用发展保持联系,数据派团队产学研的背景为志愿者带来好的发展机遇。

其他福利:和来自于名企的数据科学工作者,北大清华以及海外等名校学生共同合作、交流。

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
目录
相关文章
|
10天前
|
机器学习/深度学习 数据采集 存储
时间序列预测新突破:深入解析循环神经网络(RNN)在金融数据分析中的应用
【10月更文挑战第7天】时间序列预测是数据科学领域的一个重要课题,特别是在金融行业中。准确的时间序列预测能够帮助投资者做出更明智的决策,比如股票价格预测、汇率变动预测等。近年来,随着深度学习技术的发展,尤其是循环神经网络(Recurrent Neural Networks, RNNs)及其变体如长短期记忆网络(LSTM)和门控循环单元(GRU),在处理时间序列数据方面展现出了巨大的潜力。本文将探讨RNN的基本概念,并通过具体的代码示例展示如何使用这些模型来进行金融数据分析。
68 2
|
3月前
|
机器学习/深度学习 数据采集 人工智能
Python实现深度神经网络RNN-LSTM分类模型(医学疾病诊断)
Python实现深度神经网络RNN-LSTM分类模型(医学疾病诊断)
102 0
Python实现深度神经网络RNN-LSTM分类模型(医学疾病诊断)
|
7天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
10天前
|
机器学习/深度学习 存储 自然语言处理
从理论到实践:如何使用长短期记忆网络(LSTM)改善自然语言处理任务
【10月更文挑战第7天】随着深度学习技术的发展,循环神经网络(RNNs)及其变体,特别是长短期记忆网络(LSTMs),已经成为处理序列数据的强大工具。在自然语言处理(NLP)领域,LSTM因其能够捕捉文本中的长期依赖关系而变得尤为重要。本文将介绍LSTM的基本原理,并通过具体的代码示例来展示如何在实际的NLP任务中应用LSTM。
33 4
|
8天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
19天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
16天前
|
机器学习/深度学习 自然语言处理 PyTorch
【机器学习】探索LSTM:深度学习领域的强大时间序列处理能力
【机器学习】探索LSTM:深度学习领域的强大时间序列处理能力
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目采用MATLAB 2022a实现时间序列预测,利用CNN与LSTM结合的优势,并以鲸鱼优化算法(WOA)优化模型超参数。CNN提取时间序列的局部特征,LSTM处理长期依赖关系,而WOA确保参数最优配置以提高预测准确性。完整代码附带中文注释及操作指南,运行效果无水印展示。
|
1月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目展示了一种结合灰狼优化(GWO)与深度学习模型(CNN和LSTM)的时间序列预测方法。GWO算法高效优化模型超参数,提升预测精度。CNN提取局部特征,LSTM处理长序列依赖,共同实现准确的未来数值预测。项目包括MATLAB 2022a环境下运行的完整代码及视频教程,代码内含详细中文注释,便于理解和操作。

热门文章

最新文章