独家 | 从全方位为你比较3种数据科学工具的比较:Python、R和SAS(附链接)

简介: 关于三种数据科学工具Python、R和SAS,本文从8个角度进行比较分析并在文末提供记分卡,以便你随时调整权重,快速做出选择。

翻译:张玲

校对:吴金笛

本文约3000字,建议阅读5分钟。

关于三种数据科学工具Python、R和SAS,本文从8个角度进行比较分析并在文末提供记分卡,以便你随时调整权重,快速做出选择。


简介

我们喜欢比较!

从比较三星、苹果、HTC的智能手机,iOS、Android、Windows的移动操作系统到比较即将选举的选举候选人,或者选择世界杯队长,比较和讨论丰富了我们的生活。如果你喜欢讨论,你所要的就是在一个充满激情的群体中抛出一个相关问题,然后看着它爆炸式地发展!这个过程的美妙之处在于,社区里的每个人都是一个知识渊博的人。

我在这里也引发类似的讨论,比较SAS、R和Python。SAS和R孰好孰坏可能是数据科学领域的最大争论,而Python是目前发展最快的语言之一,自其诞生以来,已经走过很长的路。我开始这个讨论的原因并不是想看它爆炸(不过那也很有趣),而是知道我们都会从讨论中受益。

这也是我在这个博客上最常见的问题之一,所以我会和所有的读者、访客一起讨论这个问题。

SAS

https://www.analyticsvidhya.com/learning-paths-data-science-business-analytics-business-intelligence-big-data/learning-path-business-analyst-sas/

R

https://www.analyticsvidhya.com/learning-paths-data-science-business-analytics-business-intelligence-big-data/learning-path-r-data-science/

数据科学领域

https://courses.analyticsvidhya.com/courses/introduction-to-data-science-2?utm_source=blog&utm_medium=PythonvRvSASarticle

Python

https://www.analyticsvidhya.com/learning-paths-data-science-business-analytics-business-intelligence-big-data/learning-path-data-science-Python/

image.png

关于这个话题不是已经说了很多了吗?

可能是的,但我仍然觉得有必要谈论,原因如下:

  • 数据科学行业是一个充满活力的行业,两年前进行的任何比较都有可能和数据科学不再相关。
  • 传统上,Python不在比较范围内,但现在我认为这不仅仅是一个值得考虑的问题。
  • 在我即将讨论语言全球趋势的同时,我将添加有关印度分析行业(处于不同发展水平)的特定信息。

所以,不要再拖延了,让讨论开始吧!

背景

以下是对3种数据科学工具的简要描述:

SAS:毋庸置疑,SAS一直是商业分析领域的市场领导者。该软件提供了大量的统计功能,具有良好的图形用户界面(Enterprise Guide&Miner),便于人们快速学习,并提供出色的技术支持。然而,最终它成为最昂贵的选择,还不具备丰富的最新统计功能。

R:R是SAS的开源版本,传统上用于学术和研究。由于其开源特性,最新的统计功能很快就会发布,而且互联网上有很多学习文档,R是一个非常划算的选择。

Python:Python作为一种开源语言,它的使用与日俱增。如今,它的扩展程序库(numpy、scipy和matplotlib)和功能几乎可以用于您可能想要进行的任何统计操作/模型构建。自从引入panda后,它在结构化数据操作方面变得非常强大。

比较属性(比较角度)

我将在以下8个属性上比较这些语言:

  1. 可用性/成本
  2. 易学性
  3. 数据处理能力
  4. 图形功能
  5. 工具进展
  6. 工作情形
  7. 深度学习支持
  8. 客户服务支持和社区

我从分析师的角度比较这些,所以,如果你想为公司购买一个工具,你可能无法在这里得到完整的答案,但下面的信息仍然有用。对这三种工具,我就每个比较属性进行评分(1–低;5–高)。

这些比较属性的权重取决于你从事的职业和抱负。

1.可用性/成本

SAS是一种商业软件,很昂贵,对于大多数专业人员(以个人身份)来说仍然遥不可及。然而,它在私营机构中占有最高的市场份额。因此,除非您所在的组织购买了SAS,否则可能很难接触它。虽然,SAS提供了一个免费的大学版本,可以使用Jupyter笔记本,但它仍有一些限制!

另一方面,R&Python是完全免费的。以下是我在这个参数上的评分:

SAS – 3

R – 5

Python – 5

2.易学性

SAS很容易学习,并且为已经了解SQL的人提供了简单的选项(PROC

-SQL)。即使不这样,它的知识库中也有一个很好的、稳定的图形用户界面。在资源方面,各个大学的网站上都有教程,SAS有一个全面的文档。有来自SAS培训机构的认证,但需要花钱才能获得。

在这里列出的3种工具中,R的学习曲线最陡,因为需要你学习和理解编码。R是一种低级编程语言,因此简单的过程可能需要较长的代码。

SQL

https://www.analyticsvidhya.com/blog/2015/03/basics-sql-rdbms/

proc-sql

https://www.analyticsvidhya.com/blog/2015/04/data-exploration-sas-data-step-proc-sql/

Python在编程领域以其简单性而闻名,这对于数据分析也是如此。虽然到目前为止还没有广泛使用的图形界面,但我希望Python notebooks会越来越成为主流,这会为文档和共享提供了很棒的功能。

SAS – 4.5

R – 2.5

Python – 3.5

3.数据处理能力

在过去,这一直是SAS的优势。R在内存(RAM)中进行所有的计算,因此计算受到32位机器上RAM数量的限制,但情况不再是这样了。这三种工具都具有良好的数据处理能力和并行计算选项,我觉得这不再是一个很大的区别。他们都可以集成Hadoop和Spark集成,同时也支持Cloudera和ApachePig。

SAS – 4

R – 4

Python – 4

4.图形功能

SAS具有良好的功能图形功能,然而,只是功能性的。任何对绘图的自定义都是困难的,需要你理解复杂的SAS图形(程序扩展)包。

R和Python都具有非常高级的图形功能,有许多软件(程序扩展)包将为您提供高级图形功能。

现在,随着这两种工具都引入plotly并且Python引入了Seaborn,自定义绘图变得前所未有的简单。

SAS – 3

R – 4.5

Python – 4.5

5.工具进展

这3个工具都具有最基本基本和最需要的所有功能,只有在研究最新的技术和算法时,这个特性才重要。

由于其开放性,R&Python可以快速获得最新特性,而SAS在新版本的推出中更新了其功能。由于R在学术界广泛应用,因此新功能的发展很快。

尽管如此,SAS在受控环境中发布更新,因此它们经过了很好的测试。另一方面,R&Python是开放的,在最新功能的开发中有出错的可能。

SAS – 4

R – 4.5

Python – 4.5

6.工作情形

在全球范围内,SAS仍然是市场领导者,大多数大型组织仍然在SAS上工作。另一方面,R/Python对于初创企业和寻求成本效益的公司来说是更好的选择。此外,据报告,在过去几年里,R/Python相关的工作数量有所增加。这是一个在互联网上广泛发布的趋势,显示了R和SAS工作数量的趋势。用于数据分析的Python工作与R工作具有类似或更高的趋势:

在下图中,蓝色代表R,橙色代表SAS。

image.png

在下图中,蓝色代表R,橙色代表Python。

image.png

数据科学工作中使用的工具分布情况如下:

image.png

SAS – 4

R – 4.5

Python – 4.5

7.客户服务支持与社区

R和Python拥有最大的在线社区,但没有客户服务支持。所以,如果你有麻烦,你就靠自己了。不过,你会得到很多帮助的。

SAS提供了专门的客户服务社区。因此,如果你在安装方面遇到问题或任何其他技术挑战,你可以联系他们。

SAS – 4

R – 3.5

Python – 3.5

8.深度学习支持

SAS的深度学习仍处于起步阶段,还有很多工作要做。

Python在该领域有着巨大的进步,它有许多(程序扩展)包,如tensorflow和keras。

R最近增加了对这些包以及一些基本包的支持。R中的kerasR和keras包充当Python包keras的接口。

SAS – 2

Python – 4.5

R – 3

其他因素:

以下是一些值得注意的要点:

  • Python广泛应用在Web开发中,如果你从事在线业务,使用Python可以同时进行Web开发和分析。
  • SAS过去在部署端到端基础架构(可视化分析、数据仓库、数据质量、报告和分析)方面具有很大优势,但现在可以通过在SAP HANA和Tableau等平台上集成/支持R,这种优势已不再明显。尽管它距离SAS这样的无缝集成还有很远的距离,但这段旅程已经开始。

结论

在今天的情况下,我们看到市场对Python略有倾斜。考虑到行业的动态性,押注什么即将占据上风,时机尚未成熟。根据你的情况(职业阶段、财务状况等),你可以增加你自己的权重,并想出可能适合你的方案。以下是一些特定的场景:

如果你是一个刚进入分析行业的人(特别是在印度),我建议你学习SAS作为你的第一语言。学习容易,就业市场占有率最高。

如果你是一个已经在这个行业中一段时间的人,你应该尝试学习一个新工具来多样化你的专业知识。

对于业内的专家和专业人士,人们至少应该知道其中的两个,这将为未来增加许多灵活性,并打开新的机会。

如果您是初创企业/自由职业者,R/Python更有用。

从战略上讲,具备更多实际操作帮助和培训的企业机构可以选择SAS作为选项。

研究人员和统计学家选择R作为替代方案,因为它有助于进行大量的计算。正如他们所说,R是为了完成工作,而不是为了让你的电脑更轻松。

由于其轻量级的特性和不断增长的社区,Python明显已经成为当今初创企业的选择,这也是深度学习的最佳选择。

下面是最后的记分卡:

image.png

以上是我对这一比较的看法。现在轮到你通过下面的评论来分享你的观点了。

原文标题:

Python vs. R (vs. SAS) – which tool should I learn?

原文链接:

https://www.analyticsvidhya.com/blog/2017/09/sas-vs-vs-Python-tool-learn/

编辑:王菁

校对:龚力

译者简介

image.png

张玲,在岗数据分析师,计算机硕士毕业。从事数据工作,需要重塑自我的勇气,也需要终生学习的毅力。但我依旧热爱它的严谨,痴迷它的艺术。数据海洋一望无境,数据工作充满挑战。感谢数据派THU提供如此专业的平台,希望在这里能和最专业的你们共同进步!

翻译组招募信息

工作内容:将选取好的外文前沿文章准确地翻译成流畅的中文。如果你是数据科学/统计学/计算机专业的留学生,或在海外从事相关工作,或对自己外语水平有信心的朋友,数据派翻译组欢迎你们加入!

你能得到:提高对于数据科学前沿的认知,提高对外文新闻来源渠道的认知,海外的朋友可以和国内技术应用发展保持联系,数据派团队产学研的背景为志愿者带来好的发展机遇。

其他福利:和来自于名企的数据科学工作者,北大清华以及海外等名校学生共同合作、交流。

目录
相关文章
|
1月前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
169 10
|
4天前
|
测试技术 数据库 Python
Python装饰器实战:打造高效性能计时工具
在数据分析中,处理大规模数据时,分析代码性能至关重要。本文介绍如何使用Python装饰器实现性能计时工具,在不改变现有代码的基础上,方便快速地测试函数执行时间。该方法具有侵入性小、复用性强、灵活度高等优点,有助于快速发现性能瓶颈并优化代码。通过设置循环次数参数,可以更准确地评估函数的平均执行时间,提升开发效率。
80 61
Python装饰器实战:打造高效性能计时工具
|
9天前
|
数据可视化 算法 数据挖掘
Python时间序列分析工具Aeon使用指南
**Aeon** 是一个遵循 scikit-learn API 风格的开源 Python 库,专注于时间序列处理。它提供了分类、回归、聚类、预测建模和数据预处理等功能模块,支持多种算法和自定义距离度量。Aeon 活跃开发并持续更新至2024年,与 pandas 1.4.0 版本兼容,内置可视化工具,适合数据探索和基础分析任务。尽管在高级功能和性能优化方面有提升空间,但其简洁的 API 和完整的基础功能使其成为时间序列分析的有效工具。
60 37
Python时间序列分析工具Aeon使用指南
|
6天前
|
数据采集 Web App开发 数据可视化
Python用代理IP获取抖音电商达人主播数据
在当今数字化时代,电商直播成为重要的销售模式,抖音电商汇聚了众多达人主播。了解这些主播的数据对于品牌和商家至关重要。然而,直接从平台获取数据并非易事。本文介绍如何使用Python和代理IP高效抓取抖音电商达人主播的关键数据,包括主播昵称、ID、直播间链接、观看人数、点赞数和商品列表等。通过环境准备、代码实战及数据处理与可视化,最终实现定时任务自动化抓取,为企业决策提供有力支持。
|
15天前
|
存储 算法 Serverless
剖析文件共享工具背后的Python哈希表算法奥秘
在数字化时代,文件共享工具不可或缺。哈希表算法通过将文件名或哈希值映射到存储位置,实现快速检索与高效管理。Python中的哈希表可用于创建简易文件索引,支持快速插入和查找文件路径。哈希表不仅提升了文件定位速度,还优化了存储管理和多节点数据一致性,确保文件共享工具高效运行,满足多用户并发需求,推动文件共享领域向更高效、便捷的方向发展。
|
26天前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
1月前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
410 7
|
21天前
|
数据采集 存储 XML
python实战——使用代理IP批量获取手机类电商数据
本文介绍了如何使用代理IP批量获取华为荣耀Magic7 Pro手机在电商网站的商品数据,包括名称、价格、销量和用户评价等。通过Python实现自动化采集,并存储到本地文件中。使用青果网络的代理IP服务,可以提高数据采集的安全性和效率,确保数据的多样性和准确性。文中详细描述了准备工作、API鉴权、代理授权及获取接口的过程,并提供了代码示例,帮助读者快速上手。手机数据来源为京东(item.jd.com),代理IP资源来自青果网络(qg.net)。
|
1月前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
2月前
|
传感器 物联网 开发者
使用Python读取串行设备的温度数据
本文介绍了如何使用Python通过串行接口(如UART、RS-232或RS-485)读取温度传感器的数据。详细步骤包括硬件连接、安装`pyserial`库、配置串行端口、发送请求及解析响应等。适合嵌入式系统和物联网应用开发者参考。
75 3