《深入浅出深度学习:原理剖析与Python实践》| 每日读本书

简介: 通俗易懂讲解深度学习核心要素,快速炼成AI工程师!杨强教授、邓侃博士力荐!入门+工具+思维+实践=深度学习速成宝典!每日搜罗最具权威专业书籍,更多图书请关注“每日读本书”。

编辑推荐

本书最大的特色在于取舍明确,一切无助于迅速理解深度学习精髓的内容全被摒弃了,并着重阐述了技术上的重点和难点;表达上深入浅出:即便是从未接触过AI知识的人,也能从作者简明清晰的表述中,一窥深度学习的殿堂。

对任何一位想成为AI/深度学习领域工程师的读者来说,《深入浅出深度学习:原理剖析与Python实践》能帮你迅速打开AI的大门,并成长为一名合格的AI工程师。

test
黄安埠 著 / 2017年6月出版

内容提要

《深入浅出深度学习:原理剖析与Python实践》介绍了深度学习相关的原理与应用,全书共分为三大部分,第一部分主要回顾了深度学习的发展历史,以及Theano的使用;第二部分详细讲解了与深度学习相关的基础知识,包括线性代数、概率论、概率图模型、机器学习和最优化算法;在第三部分中,针对若干核心的深度学习模型,如自编码器、受限玻尔兹曼机、递归神经网络和卷积神经网络等进行详细的原理分析与讲解,并针对不同的模型给出相应的具体应用。

《深入浅出深度学习:原理剖析与Python实践》适合有一定高等数学、机器学习和Python编程基础的在校学生、高校研究者或在企业中从事深度学习的工程师使用,书中对模型的原理与难点进行了深入分析,在每一章的最后都提供了详细的参考文献,读者可以对相关的细节进行更深入的研究。最后,理论与实践相结合,《深入浅出深度学习:原理剖析与Python实践》针对常用的模型分别给出了相应的应用,读者也可以在Github中下载和查看《深入浅出深度学习:原理剖析与Python实践》的代码。

作者简介

黄安埠

2012年毕业于清华大学,获硕士学位,在校期间活跃于TopCoder等编程竞赛社区。现为腾讯基础研究高级工程师,研究领域包括个性化推荐、自然语言处理和大规模的相似度优化计算,特别是对于深度学习在推荐系统的应用有深入的研究,并申请了国内十余项相关专利。

媒体评论

在这个人工智能红红火火的年代,写出一本能让初学者和“老司机”同样感到非常有用的机器学习书是一件很有意义却又不容易的事。黄安埠的《深入浅出深度学习:原理剖析与Python实践》就做到了这一点。 本书从最基本的人工智能假设出发,回顾了人工智能的发展简史,很自然地把读者带入现代常用的算法、思想和实践中。从数学基础,到编程例证,再到各个流行的开源软件包,本书起到了入门与工具的作用。同时,书的后半部也帮助读者深入了解深度学习的思维和实践。
我一直在寻找一本既可以用于教学也能给学生动手做系统的工具书,现在很高兴地向大家推荐:本书就可以达到这个目的。

—— 杨强 香港科技大学计算机系主任,中国人工智能协会副理事长

本书内容全面,但是取舍明确,有重点地深入,尤其对于技术的重点难点解释得很详细,深入浅出:着重于原理的解释和动手实践的路径,但是并不拘泥于细枝末节。

认真读完此书,读者应该拥有三项能力:一是读得懂深度学习的论文;二是读得懂深度学习的代码;三是能够自行开发简单的深度学习应用。
在深度学习技术异常火爆,深度学习工程师奇缺的当下,如何快速培养深度学习方向的工程师,是一个迫切的问题。此书是难得的好教材。

—— 邓侃 博士,北京大数医达科技有限公司CTO

精彩导读

前言

What magical trick makes us intelligent? The trick is that there is no trick. The power of intelligence stems from our vast diversity, not from any single, perfect principle.
—— Marvin Minsky
智能(Intelligence)这个词的出现最早可以追溯到古希腊时期,当时人们已经开始梦想能创造出一种像人类一样,具有独立思考和推理能力的机器,但由于受到当时生产力水平的制约,古人对“智能”的研究更多的是停留在理论探索阶段。到了近代,尤其是具有划时代意义的达特茅斯会议的召开,标志着人工智能开始从理论探索进入到理论与应用相结合的实践阶段。从世纪年代开始,人工智能的发展大致经历了三个阶段,分别从最初的逻辑推理,到统计机器学习,再到近年来逐渐占据主流地位的深度学习。

虽然深度学习是一门以神经网络为核心的学科,但人们普遍认为深度学习始于2006年,当时Hinton等人提出基于深度置信网络(DBN)逐层预训练的方法来训练深层模型,并首次提出了深度学习的概念。此后,深度学习开始进入人们的视野,但那时候深度学习更多的是少数顶尖科学家研究的领域,并没有得到大规模的应用和推广。直到2012年,Hinton和他的两个学生Alex Krizhevsky、Illya Sutskever,将卷积神经网络应用到ImageNet竞赛中,并取得了分类错误率15%的成绩,这个成绩比第二名低了近个11百分点,这一历史性的突破,使得人们开始意识到深度学习所拥有的巨大潜力,在这之后,深度学习开始在工业界,尤其是计算机视觉、语音识别和自然语言处理等领域,大规模应用,并且取得了比以往更好的效果。到了2016年,随着AlphaGo的横空出世,它的惊人表现将深度学习的热度推向了顶峰,因此2016年也被很多学者认为是人工智能元年,事实上,当前人工智能已经影响到人们生活的各个方面,如语音助手、语音搜索、无人驾驶汽车、人脸识别等,为人们的生活带来了极大的方便,人工智能也必将在今后相当长的一段时间内,继续推动着人类的技术发展。

在本书编写的过程中,市面上有关深度学习方面的中文书籍较少,因此作者希望能从理论和应用相结合的角度,对深度学习的相关知识进行较为全面的梳理,本书既可以作为初级读者的入门书籍,也适合中级读者用来加深对理论知识的理解。本书覆盖了线性代数、概率论、数值计算与最优化等基础知识,以及深度学习的两大核心:概率图模型和深度神经网络。


积跬步以至千里。每天读本书,为您搜罗最具权威专业书籍,更多图书推荐请关注每日读书

好知识需要分享,如您有喜欢的书籍想与广大开发者分享,请在文章下方评论留言,我们将为大家推荐您的爱书!

相关文章
|
12天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品加工优化的深度学习模型
使用Python实现智能食品加工优化的深度学习模型
112 59
|
11天前
|
Python
深入理解Python装饰器:从入门到实践####
本文旨在通过简明扼要的方式,为读者揭开Python装饰器的神秘面纱,从基本概念、工作原理到实际应用场景进行全面解析。不同于常规的摘要仅概述内容概要,本文将直接以一段精炼代码示例开篇,展示装饰器如何优雅地增强函数功能,激发读者探索兴趣,随后深入探讨其背后的机制与高级用法。 ####
43 11
|
8天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
8天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品市场预测的深度学习模型
使用Python实现智能食品市场预测的深度学习模型
46 5
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
7天前
|
设计模式 缓存 开发框架
Python中的装饰器:从入门到实践####
本文深入探讨了Python中装饰器的工作原理与应用,通过具体案例展示了如何利用装饰器增强函数功能、提高代码复用性和可读性。读者将学习到装饰器的基本概念、实现方法及其在实际项目开发中的实用技巧。 ####
20 3
|
9天前
|
机器学习/深度学习 数据采集 自然语言处理
深入浅出深度学习:从理论到实践
【10月更文挑战第38天】本文旨在通过浅显易懂的语言和直观的代码示例,带领读者探索深度学习的奥秘。我们将从深度学习的基本概念出发,逐步深入到模型构建、训练以及应用实例,让初学者也能轻松入门。文章不仅介绍了深度学习的原理,还提供了实战操作指南,帮助读者在实践中加深理解。无论你是编程新手还是有一定基础的学习者,都能在这篇文章中找到有价值的内容。让我们一起开启深度学习之旅吧!
|
11天前
|
机器学习/深度学习 数据采集 数据可视化
Python在数据科学中的应用:从入门到实践
本文旨在为读者提供一个Python在数据科学领域应用的全面概览。我们将从Python的基础语法开始,逐步深入到数据处理、分析和可视化的高级技术。文章不仅涵盖了Python中常用的数据科学库,如NumPy、Pandas和Matplotlib,还探讨了机器学习库Scikit-learn的使用。通过实际案例分析,本文将展示如何利用Python进行数据清洗、特征工程、模型训练和结果评估。此外,我们还将探讨Python在大数据处理中的应用,以及如何通过集成学习和深度学习技术来提升数据分析的准确性和效率。
|
9天前
|
机器学习/深度学习 算法 数据可视化
使用Python实现深度学习模型:智能食品配送优化
使用Python实现深度学习模型:智能食品配送优化
26 2
|
8天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
28 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
下一篇
无影云桌面