DLA新函数发布:事件路径分析

简介: 概述业务系统常常会产生大量的事件日志和数据,记录各种事件发生的相关信息,一条事件日志或者数据通常包含如事件ID,事件名称,时间点等。针对该类事件日志或者数据,DLA新提供了事件路径分析的聚合函数,主要支持按照事件时间点、时间戳得到事件顺序发生的时间序列,某类或者多类、某个或者多个事件发生的时间间隔序列等等。

概述

业务系统常常会产生大量的事件日志和数据,记录各种事件发生的相关信息,一条事件日志或者数据通常包含如事件ID,事件名称,时间点等。针对该类事件日志或者数据,DLA新提供了事件路径分析的聚合函数,主要支持按照事件时间点、时间戳得到事件顺序发生的时间序列,某类或者多类、某个或者多个事件发生的时间间隔序列等等。

数据模型

以下举例说明这类事件数据的数据模型,后面函数示例也以该示例数据为例。数据包含
user_id,event_time,event_id,event_name,event_attr,event_date等6个字段,本例中每个字段间用|分隔,该类数据或者日志可以存储在多种数据源中,比如对象存储、数据库、KV等(可以访问:https://zhuanlan.zhihu.com/data-lake-analytics , 查看更多DLA的云上数据能力、场景和使用方法介绍)。

4490015|1483266703322|10002|登陆|{}|2017-01-01
4490015|1483220795802|10005|收藏商品|{}|2017-01-01
4490022|1483233554546|10004|浏览商品|{"brand": "Apple", "price": 3500}|2017-01-01
4490022|1483279486394|10002|登陆|{}|2017-01-01
4490022|1483220124362|10002|登陆|{}|2017-01-01
4490022|1483233099062|10002|登陆|{}|2017-01-01
4490022|1483267998231|10010|退订商品|{}|2017-01-01
4490029|1483222204303|10007|生成订单|{"price_all": 4500}|2017-01-01
4490029|1483240004108|10004|浏览商品|{"brand": "LianX", "price": 7500}|2017-01-01
4490029|1483254745351|10006|加入购物车|{}|2017-01-01

本例,假设上面数据以sample.txt文本存储在阿里云对象存储OSS中,路径为:

oss://your_test_data_bucket/event_sample_data/sample.txt

则建schema、建表:

CREATE DATABASE `basic_test`
WITH DBPROPERTIES (
    catalog = 'oss',
    location = 'oss://your_test_data_bucket/'
)
COMMENT '';


CREATE EXTERNAL TABLE IF NOT EXISTS `basic_test`.`event_test` (
    `user_id` bigint COMMENT '',
    `event_time` bigint COMMENT '',
    `event_id` int COMMENT '',
    `event_name` varchar COMMENT '',
    `event_attr` varchar COMMENT '',
    `event_date` date COMMENT ''
)
ROW FORMAT DELIMITED
    FIELDS TERMINATED BY '\t'
STORED AS `TEXTFILE`
LOCATION 'oss://your_test_data_bucket/event_sample_data/'
TBLPROPERTIES (
    'auto.create.location' = 'true'
);

函数说明

1. event_sequence

说明:输出事件发生的时间点序列数组。

event_sequence(
  boolean desc,     -- 是否按照时间从大到小排列(可选,默认false,按照从小到大)
  bigint limit,     -- 输出的时间点序列数组的大小(可选,默认100,最大1000)
  bigint timeInMS   -- 事件发生的时间点、时间戳(必选,时间戳的long型,到毫秒)
)--> array[bigint] 

例如:

SELECT event_name, event_sequence(event_time) AS a 
FROM `basic_test`.`event_test`
GROUP BY 1 
ORDER BY 1;

-->

+-----------------+--------------------------------------------------------------+
| event_name      | a                                                            |
+-----------------+--------------------------------------------------------------+
| 加入购物车      | [1483254745351]                                              |
| 收藏商品        | [1483220795802]                                              |
| 浏览商品        | [1483233554546, 1483240004108]                               |
| 生成订单        | [1483222204303]                                              |
| 登陆            | [1483220124362, 1483233099062, 1483266703322, 1483279486394] |
| 退订商品        | [1483267998231]                                              |
+-----------------+--------------------------------------------------------------+


SELECT event_name, event_sequence(true, 3, event_time) AS a 
FROM `basic_test`.`event_test`
GROUP BY 1 
ORDER BY 1;

-->

+-----------------+-----------------------------------------------+
| event_name      | a                                             |
+-----------------+-----------------------------------------------+
| 加入购物车      | [1483254745351]                               |
| 收藏商品        | [1483220795802]                               |
| 浏览商品        | [1483240004108, 1483233554546]                |
| 生成订单        | [1483222204303]                               |
| 登陆            | [1483279486394, 1483266703322, 1483233099062] |
| 退订商品        | [1483267998231]                               |
+-----------------+-----------------------------------------------+

2. event_interval

说明:输出事件发生的时间点间隔序列数组。如果事件只发生一次,则无间隔值,对应数组输出空。

event_interval(
  boolean desc,         -- 是否按照时间从大到小排列(可选,默认false,按照从小到大)
  bigint limit,         -- 输出的时间点间隔序列数组的大小(可选,默认100,最大1000)
  bigint timeInMS,      -- 事件发生的时间点、时间戳(必选,时间戳的long型,到毫秒)
  varchar timeZoneKey,  -- 指定的时区名称(可选,默认为系统(DLA服务所在region)当前时区)
  varchar timeUnit      -- 要显示的时间点间隔的时间度量单位(*)
)--> array[bigint]
  
  
* 其中,时间度量单位目前支持:
 YEAR, QUARTER, MONTH, WEEK, DAY, HOUR, MINUTE, SECOND, MILLISECOND

例如:

SELECT event_name,
       event_interval(event_time, 'second') as a
FROM `basic_test`.`event_test`
GROUP BY 1
ORDER BY 1;

-->

+-----------------+-----------------------+
| event_name      | a                     |
+-----------------+-----------------------+
| 加入购物车      | []                    |
| 收藏商品        | []                    |
| 浏览商品        | [6449]                |
| 生成订单        | []                    |
| 登陆            | [12974, 33604, 12783] |
| 退订商品        | []                    |
+-----------------+-----------------------+



SELECT event_name,
       event_interval(true, 3, event_time, current_timezone(), 'millisecond') as a
FROM `basic_test`.`event_test`
GROUP BY 1
ORDER BY 1;

-->

+-----------------+-----------------------------------+
| event_name      | a                                 |
+-----------------+-----------------------------------+
| 加入购物车      | []                                |
| 收藏商品        | []                                |
| 浏览商品        | [-6449562]                        |
| 生成订单        | []                                |
| 登陆            | [-12783072, -33604260, -12974700] |
| 退订商品        | []                                |
+-----------------+-----------------------------------+



SELECT event_name,
       event_interval(event_time, 'UTC', 'day') as a
FROM `basic_test`.`event_test`
GROUP BY 1
ORDER BY 1;

-->

+-----------------+-----------+
| event_name      | a         |
+-----------------+-----------+
| 加入购物车      | []        |
| 收藏商品        | []        |
| 浏览商品        | [0]       |
| 生成订单        | []        |
| 登陆            | [0, 0, 0] |
| 退订商品        | []        |
+-----------------+-----------+

Data Lake Analytics首购和流量包优惠

首购用户1元10TB,流量包阶梯折扣优惠:https://et.aliyun.com/bdad/datalake
产品详情:https://www.aliyun.com/product/datalakeanalytics
云栖社区:https://yq.aliyun.com/teams/396
知乎社区:https://zhuanlan.zhihu.com/data-lake-analytics

相关实践学习
借助OSS搭建在线教育视频课程分享网站
本教程介绍如何基于云服务器ECS和对象存储OSS,搭建一个在线教育视频课程分享网站。
相关文章
|
3月前
|
数据采集 存储 DataWorks
DataWorks产品使用合集之如何查看数据质量中心(DQC)的规则执行记录
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
3月前
|
消息中间件 SQL DataWorks
DataWorks产品使用合集之节点冻结后还是发送基线告警,该如何解决
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
DataWorks产品使用合集之节点冻结后还是发送基线告警,该如何解决
|
3月前
|
DataWorks 安全 关系型数据库
DataWorks产品使用合集之如何配置基线告警触发规则
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
4月前
|
数据采集 分布式计算 DataWorks
DataWorks产品使用合集之任务工作流中遇到了日志信息显示参数值没有正确解析的问题,该如何处理
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
4月前
|
Web App开发 存储 DataWorks
DataWorks产品使用合集之对实时同步任务设置告警时支持哪些告警接收方式
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
4月前
|
DataWorks 数据处理 调度
DataWorks产品使用合集之在进行离线同步数据时,出现字段中间部分被隐藏的情况,该如何解决
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
5月前
|
分布式计算 DataWorks 安全
DataWorks产品使用合集之ODPS离线同步如何添加过滤条件
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
43 0
|
5月前
|
存储 DataWorks 安全
DataWorks产品使用合集之是否支持批量修改管道的上游依赖
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
31 0
|
5月前
|
DataWorks 安全 NoSQL
DataWorks产品使用合集之任务已经执行了几天,但血缘关系仅显示为单一表,是什么原因
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
37 0
|
5月前
|
JSON DataWorks 关系型数据库
DataWorks操作报错合集之已经绑定Hologres数据源,但是节点没法执行,显示拒绝连接,该如何处理
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
下一篇
无影云桌面