[干货]基础机器学习算法

简介: 本篇内容主要是面向机器学习初学者,介绍常见的机器学习算法,当然,欢迎同行交流。

本篇内容主要是面向机器学习初学者,介绍常见的机器学习算法,当然,欢迎同行交流。

image.png

哲学要回答的基本问题是从哪里来、我是谁、到哪里去,寻找答案的过程或许可以借鉴机器学习的套路:组织数据->挖掘知识->预测未来。组织数据即为设计特征,生成满足特定格式要求的样本,挖掘知识即建模,而预测未来就是对模型的应用。

image.png

特征设计依赖于对业务场景的理解,可分为连续特征、离散特征和组合高阶特征。本篇重点是机器学习算法的介绍,可以分为监督学习和无监督学习两大类。

image.png

无监督学习算法很多,最近几年业界比较关注主题模型,LSA->PLSA->LDA为主题模型三个发展阶段的典型算法,它们主要是建模假设条件上存在差异。LSA假设文档只有一个主题,PLSA假设各个主题的概率分布不变(theta都是固定的),LDA假设每个文档和词的主题概率是可变的。

image.png

LDA算法本质可以借助上帝掷骰子帮助理解,详细内容可参加Rickjin写的《LDA数据八卦》文章,浅显易懂,顺便也科普了很多数学知识,非常推荐。

image.png

监督学习可分为分类和回归,感知器是最简单的线性分类器,现在实际应用比较少,但它是神经网络、深度学习的基本单元。

image.png

线性函数拟合数据并基于阈值分类时,很容易受噪声样本的干扰,影响分类的准确性。逻辑回归(Logistic Regression)利用sigmoid函数将模型输出约束在0到1之间,能够有效弱化噪声数据的负面影响,被广泛应用于互联网广告点击率预估。

image.png

image.png

逻辑回归模型参数可以通过最大似然求解,首先定义目标函数L(theta),然后log处理将目标函数的乘法逻辑转化为求和逻辑(最大化似然概率 -> 最小化损失函数),最后采用梯度下降求解。

image.png

image.png

相比于线性分类去,决策树等非线性分类器具有更强的分类能力,ID3和C4.5是典型的决策树算法,建模流程基本相似,两者主要在增益函数(目标函数)的定义不同。

image.png

线性回归和线性分类在表达形式上是类似的,本质区别是分类的目标函数是离散值,而回归的目标函数是连续值。目标函数的不同导致回归通常基于最小二乘定义目标函数,当然,在观测误差满足高斯分布的假设情况下,最小二乘和最大似然可以等价。

image.png

当梯度下降求解模型参数时,可以采用Batch模式或者Stochastic模式,通常而言,Batch模式准确性更高,Stochastic模式复杂度更低。

image.png

image.png

上文已经提到,感知器虽然是最简单的线性分类器,但是可以视为深度学习的基本单元,模型参数可以由自动编码(Auto Encoder)等方法求解。

image.png

深度学习的优势之一可以理解为特征抽象,从底层特征学习获得高阶特征,描述更为复杂的信息结构。例如,从像素层特征学习抽象出描述纹理结构的边缘轮廓特征,更进一步学习获得表征物体局部的更高阶特征。

image.png

俗话说三个臭皮匠赛过诸葛亮,无论是线性分类还是深度学习,都是单个模型算法单打独斗,有没有一种集百家之长的方法,将模型处理数据的精度更进一步提升呢?当然,Model Ensembel就是解决这个问题。Bagging为方法之一,对于给定数据处理任务,采用不同模型/参数/特征训练多组模型参数,最后采用投票或者加权平均的方式输出最终结果。

image.png

image.png

Boosting为Model Ensemble的另外一种方法,其思想为模型每次迭代时通过调整错误样本的损失权重提升对数据样本整体的处理精度,典型算法包括AdaBoost、GBDT等。

image.png

不同的数据任务场景,可以选择不同的Model Ensemble方法,对于深度学习,可以对隐层节点采用DropOut的方法实现类似的效果。

image.png

image.png

image.png

介绍了这么多机器学习基础算法,说一说评价模型优劣的基本准则。欠拟合和过拟合是经常出现的两种情况,简单的判定方法是比较训练误差和测试误差的关系,当欠拟合时,可以设计更多特征来提升模型训练精度,当过拟合时,可以优化特征量降低模型复杂度来提升模型测试精度。
image.png

特征量是模型复杂度的直观反映,模型训练之前设定输入的特征量是一种方法,另外一种比较常用的方法是在模型训练过程中,将特征参数的正则约束项引入目标函数/损失函数,基于训练过程筛选优质特征。

image.png

模型调优是一个细致活,最终还是需要能够对实际场景给出可靠的预测结果,解决实际问题。期待学以致用!

目录
相关文章
|
7天前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
37 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
30天前
|
机器学习/深度学习 算法 数据挖掘
8个常见的机器学习算法的计算复杂度总结
8个常见的机器学习算法的计算复杂度总结
8个常见的机器学习算法的计算复杂度总结
|
9天前
|
机器学习/深度学习 存储 人工智能
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。
19 0
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
|
22天前
|
机器学习/深度学习 数据采集 算法
数据挖掘和机器学习算法
数据挖掘和机器学习算法
|
25天前
|
机器学习/深度学习 数据采集 存储
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
153 1
|
30天前
|
机器学习/深度学习 算法 数据挖掘
机器学习必知必会10大算法
机器学习必知必会10大算法
|
1月前
|
机器学习/深度学习 算法 数据挖掘
【白话机器学习】算法理论+实战之决策树
【白话机器学习】算法理论+实战之决策树
|
1月前
|
机器学习/深度学习 算法 搜索推荐
【机器学习】机器学习的基本概念、算法的工作原理、实际应用案例
机器学习是人工智能的一个分支,它使计算机能够在没有明确编程的情况下从数据中学习并改进其性能。机器学习的目标是让计算机自动学习模式和规律,从而能够对未知数据做出预测或决策。
53 2
|
1月前
|
机器学习/深度学习 数据采集 人工智能
理解并应用机器学习算法:从技术基础到实践应用
【8月更文挑战第10天】机器学习算法的应用已经深入到我们生活的方方面面,理解和掌握机器学习算法对于数据科学家、工程师乃至普通从业者来说都至关重要。通过本文的介绍,希望大家能够对机器学习有一个基本的认识,并学会如何将其应用于实际问题中。当然,机器学习是一个不断发展和演变的领域,只有不断学习和实践,才能跟上时代的步伐。
|
29天前
|
机器学习/深度学习 存储 算法
图解最常用的 10 个机器学习算法!
图解最常用的 10 个机器学习算法!