如何通过AI 全面提升运维效率?选型宝分享AIOps实战案例

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 前言运维,是企业IT最基础的工作,也是痛点、槽点最多的工作。海量的数据、频繁的报警、艰难的排障、无情的投诉,足以让运维工程师们感到崩溃和绝望……Gartner在ITOA (IT Operations Analytics IT运营分析)的基础上,提出了AIOps的概念。

前言

运维,是企业IT最基础的工作,也是痛点、槽点最多的工作。海量的数据、频繁的报警、艰难的排障、无情的投诉,足以让运维工程师们感到崩溃和绝望……

Gartner在ITOA (IT Operations Analytics IT运营分析)的基础上,提出了AIOps的概念。当时,AIOps的含义是“基于算法的IT运维(Algorithmic IT Operations)”。随着AI热潮的到来,Gartner也顺时应势,在2017年的一份报告中,将AIOps重新定义为“Artificial Intelligence for IT Operations”,也就是现在大家都在谈论的“智能运维”。

AIOps概念的提出,是尝试把机器学习、深度学习等人工智能算法应用于IT运维工具和业务系统所采集的大型数据集,并尝试模拟人类行为(如发现、判断、响应)的智能化运维管理平台。

AIOps希望让运维管理具备算法和机器学习的能力,通过持续学习,使运维更加智能化,并将运维人员从纷繁复杂的日常工作中解放出来。

两年多过去了,AIOps到底是依然停留在理念和愿景层面,还是变成了可以落地实施的解决方案?

带着这些问题,选型宝直播采访了国内AIOps技术前沿探索者,Gartner AIOps Sample Vendors——云智慧的副总裁李诚先生。

以下就是李诚先生在直播节目中为大家分享的部分精彩内容,希望能对您有所启发和帮助。

1
AIOps的概念、应用场景和用户价值

李维良:AIOps可以应用在哪些运维的场景下?

李诚:AIOps的应用场景非常广泛,能够切中传统运维中的大量痛点,比如:异常检测、故障预测、关联分析、根因分析、告警抑制、故障自动处理等等。

李维良:云智慧怎么理解AIOps的概念?

李诚:在云智慧的理念中,IT即是业务,因此,我们将AIOps理解为“智能业务运维”,并在2016年发布了智能业务运维平台DOCP(Digital Operation Central Platform)。DOCP包含了大数据运维、业务运维、智能运维等解决方案,旨在帮助用户全面提升IT运营效率,强化IT的业务价值。云智慧的智能业务运维将Gartner的AIOps理念与中国的IT运维实践相结合,更加场景化,更接地气。

李维良:过去两年里,云智慧的AIOps的方案应用在哪些行业?带来了哪些价值?

李诚:在过去的两年里,云智慧智能业务运维解决方案已经在银行、保险、证券、航空、医药、制造、消费品等多个领域的大型企业的业务场景中成功落地。

智能业务运维解决方案通过运维的自动化、智能化和IT团队赋能,大幅提升了运维工作的效率。同时,智能业务运维使运维的方式更加科学,减少了对个人经验的过度依赖,克服了人工运维的不稳定性,从而大幅提高了运维工作的质量。智能业务运维可以将运维人员从巨量、繁琐、重复性的劳动中解放出来,使他们能够将更多的精力投入到IT和业务的创新中。

鉴于云智慧在AIOps领域的贡献和努力,Gartner在新近发布的《中国ICT行业技术成熟度曲线,2018》报告中,将云智慧提名为AIOps领域的Sample Vendors。

2
AIOps实战案例分享

李维良:是否可以结合一些行业案例,做一些具体的阐述?

李诚:
应用场景1:异常监测

我们的一家做航空行业的客户,在业务开展过程中,每天600个业务应用系统(包括售票系统、退票系统、进仓系统、订单查询系统等)产生海量日志数据(2个小时产生7TB/10亿条的增量数据)。用户希望能够对海量数据进行实时分析,及时发现业务波动并进行预警。这家客户的需求,具有数据量大、指标复杂度高、实时性要求高(1分钟之内完成数据的采集、分析、呈现)等特点。

云智慧从2016年开始服务这家客户,并为其建立了业务运营实时监控分析平台,实现了业务异常预警、业务基线预警、运营监控分析、日志实时查询等目标。

通过分布式大数据处理、内存计算等技术,我们为该用户实现了10万条/秒的并发数据实时分析处理和秒级告警处理。通过深度学习、时序预测等算法的应用,使预测的准确率得到大幅提升,预测结果与实际情况的偏差仅有3%。

应用场景2 :关联分析

我们的一家金融行业客户是数字化步伐比较快的大型金融机构,在国内拥有3个数据中心,600个业务应用系统,上万台物理设备,系统彼此之间调用关系复杂,并且部分核心业务之间具有强依赖关系。

这些应用系统每天产生海量日志数据和告警信息,对日志报文数据的处理分析时效性差,效率低,IT的整体运维效率已经成为制约企业数字化发展的障碍。

针对这家企业的情况,云智慧基于过去多年在监控宝、透视宝、压测宝等产品上积累的技术和经验,为其建立起了业务与IT的统一视图,厘清了各类指标数据、日志数据和事件数据的内在关联关系,并进行了统一的建模和分析。

在此基础上,云智慧的智能业务运维平台为这家客户实现了关键业务指标和体验指标的预测和异常检测,提升了业务运营和IT管理效率,初步实现了IT运营的数字化和智能化。

金融管控中心大屏效果展示

应用场景3 :智能告警

当IT故障发生时,多个系统会同时发出告警,这为运维人员带来巨大的困扰,使故障处理的效率大幅降低,这种现象就是“告警风暴”。告警风暴是IT运维中的常见场景,也是AIOps的典型应用之一。

我们的一家药企客户,现有近10个面向各类客户的线上产品和办公系统,随着业务的快速发展,他们在全国范围内建设了3个数据中心,拥有上万台物理设备。系统彼此之间调用关系复杂,并且部分核心业务之间具有强依赖关系。

运维团队每天会接收近万条的故障告警通知消息,人均接收量在100-200条,并且漏报、错报情况频发。故障发生时,需要各部门协调才能定位解决问题,平均解决时间需要1个小时以上。用户目前有5套监控系统,并且每个系统会独立的产生告警通知,当出现大规模故障时,运维人员会同时收到来自各个系统的大量告警通知,对正常的工作造成了极大困扰。

针对这家企业的情况,我们为其部署了智能告警平台,利用 restAPI 、agnet 采集等方式,对接各个监控系统,将各个系统的告警消息通过智能告警平台进行统一汇聚和整合,让运维人员可以在一个平台处理所有故障。

智能告警平台正式部署后,我们成功将告警量压缩了93%,即每100条报警数据,可以压缩到7条。同时,系统还可以对报警信息进行科学分类,并及时发送给正确的人。

智能告警平台大幅缩短了整个运维团队的平均响应时间(MTTA),从过去的平均25分23秒降低到了4分16秒。通过动态基线等技术,可以将错报、漏报率分别从22.4%降低到了8.5%;9.3%降低到了3.8%。

在此基础上,我们最近还为用户实现了“故障预测”功能,帮助用户提前了解可能发生的IT问题,最大限度降低IT故障对业务的影响。

3
部署方式与落地方法论

李维良:AIOps落地,需要怎样的方法?

李诚:
智能运维的落地也不是一蹴而就的,它需要经历三个阶段:

第一阶段是大数据运维,构建统一监控平台,实现IT资源的统一管控。利用大数据的手段,采集、分析基础设施、网络、日志等IT监控数据,通过海量IT数据的实时处理分析,消除数据孤岛,实现统一的告警,提升运维管理效率。

第二阶段是业务运维,全面提升用户体验和业务系统健康,实现业务和IT的双向驱动。用户体验和业务效能是数字化业务的两大核心指标,通过IT和业务双向驱动的业务运维,能够帮助企业发现IT故障对业务造成的影响有多大、IT如何更好地支撑业务转型、如何最大程度地降低业务损失。

第三阶段是智能运维,构建智能化的IT运营管控体系,持续提升业务价值。通过智能告警、异常监测、根因分析、自动处置、故障预测,极大提升IT运维效率、保障业务连续、减少业务损失。

这其中,大数据平台是基础,是整个智能业务运维体系的基座。企业用户可先打好大数据基础、并在此之上,逐步增加应用模块,采用积累经验、小步快跑的方式,让AIOps在自己的企业成功落地。

李维良:云智慧智能业务运维平台支持怎样的部署方式?

李诚:云智慧智能业务运维平台采用混合云架构,支持本地私有化部署和基于公有云的SaaS部署。做为国内第一家实现AIOps跨行业场景化应用的业务运维解决方案提供商,云智慧可以为用户提供从大数据平台,到智能运维模块、再到专家与实施的全方位服务,满足企业的基础需求和个性化需求,促进企业数字化业务的发展。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
9天前
|
人工智能 机器人 UED
不怕不会设计logo拉-本篇教你如何使用AI设计logo-如何快速用AI设计logo-附上AI绘图logo设计的咒语-优雅草央千澈-实战教程
不怕不会设计logo拉-本篇教你如何使用AI设计logo-如何快速用AI设计logo-附上AI绘图logo设计的咒语-优雅草央千澈-实战教程
120 85
不怕不会设计logo拉-本篇教你如何使用AI设计logo-如何快速用AI设计logo-附上AI绘图logo设计的咒语-优雅草央千澈-实战教程
|
7天前
|
人工智能 数据处理 语音技术
Pipecat实战:5步快速构建语音与AI整合项目,创建你的第一个多模态语音 AI 助手
Pipecat 是一个开源的 Python 框架,专注于构建语音和多模态对话代理,支持与多种 AI 服务集成,提供实时处理能力,适用于语音助手、企业服务等场景。
63 23
Pipecat实战:5步快速构建语音与AI整合项目,创建你的第一个多模态语音 AI 助手
|
4天前
|
机器学习/深度学习 数据采集 人工智能
昇腾AI行业案例(七):基于 Conformer 和 Transformer 模型的中文语音识别
欢迎学习《基于 Conformer 和 Transformer 模型的中文语音识别》实验。本案例旨在帮助你深入了解如何运用深度学习模型搭建一个高效精准的语音识别系统,将中文语音信号转换成文字,并利用开源数据集对模型效果加以验证。
29 12
|
4天前
|
机器学习/深度学习 人工智能 运维
基于AI的自动化事件响应:智慧运维新时代
基于AI的自动化事件响应:智慧运维新时代
59 11
|
3天前
|
机器学习/深度学习 人工智能 运维
AI赋能运维:实时警报管理的新时代
AI赋能运维:实时警报管理的新时代
26 8
|
9天前
|
运维 自然语言处理 Ubuntu
解锁高效运维新姿势!操作系统智能助手OS Copilot新功能实战测评
阿里云OS Copilot经过多轮迭代,现已支持多端操作系统(包括Ubuntu、CentOS、Anolis OS等)及aarch64架构,极大扩展了其适用范围。新特性包括阿里云CLI调用、系统运维及调优工具的直接调用、Agent模式实装以及复杂任务处理能力。这些更新显著提升了用户体验和效率,特别是在处理紧急情况时,OS Copilot能快速查找并执行命令,节省大量时间和精力。此外,通过自然语言交互,用户可以轻松完成如系统健康检查、文件操作及日志分析等任务。总之,OS Copilot已从内测时的辅助工具进化为合格的贴身管家,极大地简化了日常运维工作。
|
7天前
|
人工智能 运维 Linux
AI驱动的操作系统服务体验:大模型时代的运维革新
AI驱动的操作系统服务体验:大模型时代的运维革新
23 5
|
7天前
|
存储 机器学习/深度学习 人工智能
昇腾AI行业案例(六):基于 PraNet 的医疗影像分割
欢迎学习《基于 PraNet 的医疗影像分割》实验。在本实验中,你将深入了解如何运用计算机视觉(CV)领域的 AI 模型,搭建一个高效精准的医疗影像分割系统,专注于息肉分割任务,并利用开源数据集对模型效果加以验证。
18 1
|
9天前
|
机器学习/深度学习 人工智能 算法
昇腾AI行业案例(一):基于AI图像处理的疲劳驾驶检测
在本实验中,您将学习如何使用利用CV(Computer Vision)领域的AI模型来构建一个端到端的疲劳驾驶检测系统,并使用开源数据集进行效果验证。为此,我们将使用昇腾的AI硬件以及CANN等软件产品。
46 3
|
7天前
|
存储 人工智能 数据可视化
昇腾AI行业案例(五):基于 DANet 和 Deeplabv3 模型的遥感图像分割
欢迎学习《基于 DANet 和 Deeplabv3 模型的遥感图像分割》实验。在本实验中,你将深入了解如何运用计算机视觉(CV)领域的 AI 模型,搭建一个高效精准的遥感地图区域分割系统,并利用开源数据集和昇腾 AI 芯片对模型效果加以验证。
21 0
昇腾AI行业案例(五):基于 DANet 和 Deeplabv3 模型的遥感图像分割

热门文章

最新文章