推荐系列(六):深层神经网络模型(2)

简介: 简单介绍Softmax训练的样本以及与fm的对比

Softmax训练

上一节解释了如何将softmax层合并到推荐系统的深度神经网络中。本节将详细介绍此系统的训练数据。

训练数据

softmax训练数据由查询特征X以及用户与之交互的项目向量(表示为概率分布 p)组成,在下图中用蓝色标记。模型的变量是不同层中的权重,在下图中用橙色标记。通常使用随机梯度下降或其变体方法来训练模型。

1

负抽样

由于损失函数比较两个概率向量 ${p, \hat p(x) \in \mathbb R^n}$(真值和模型的输出),如果语料库太大, 计算损失的梯度(对于单个查询 X)时,计算代价可能非常昂贵。

可以设置一个系统来仅计算正样本的梯度。但是,如果系统仅在正样本上训练,则模型可能遭受折叠问题,如下所述。

折叠
在图中,假设每种颜色代表不同类别的查询和项目。每个查询(表示为正方形)仅与相同颜色的项目(表示为圆形)交互。模型可以学习如何相对于彼此放置给定颜色的查询/项目嵌入(正确地捕获该颜色内的相似性),但是来自不同颜色的嵌入可能偶然地在嵌入空间的相同区域中结束,这种现象被称为折叠,这可能会导致虚假推荐:在查询时,模型可能错误地给出来自不同组项目的预测高分。

2

负样本示例是与给定查询标记为“无关”的项目。在训练期间显示模型负样本教导模型应该将不同组的嵌入间距变大,彼此推离。

可以使用部分负抽样加全部的正样本数据作为训练数据,而不是使用所有负样本和正样本来计算梯度(计算代价高)或仅使用正样本(使得模型易于折叠)。总结来说,可以使用以下数据来计算近似梯度:

  • 所有正样本;
  • 部分负样本;

对负样本进行采样有不同的策略:

  • 统一采样;
  • 具有更高分数的项目j提供更高的概率${\psi(x) . V_j}$。直觉上,这些是对梯度贡献最大的样本; 这些样本通常被称为难分样本(hard negatives)。

额外资源: 有关YouTube中使用的技术,体系结构和模型的更全面的说明,请参阅 适用于YouTube建议的深度神经网络。有关折叠的更多详细信息,请参见Xin等人,折叠:为什么好模型有时会产生虚假推荐。要了解有关负抽样的更多信息,请参阅 Bengio和Senecal,自适应重要性抽样以加速神经概率语言模型的训练。

矩阵分解(FM)VS SOFTMAX

DNN模型解决了矩阵分解的许多限制,但通常训练和预测的代价更高。下表总结了两种模型之间的一些重要差异。

矩阵分解 Softmax DNN
查询特征 不容易包括在内 可以包括在内
冷启动 不容易处理词典查询或项目。可以使用一些启发式方法(例如,对于新查询,类似查询的平均嵌入) 容易处理新查询
折页 通过调整WALS中未观察到的重量可以轻松减少折叠 容易折叠,需要使用负采样或重力等技术
训练可扩展性 可轻松扩展到非常大的语料库(可能是数亿项或更多),但仅限于输入矩阵稀疏 难以扩展到非常大的语料库,可以使用一些技术,例如散列,负采样等。
提供可扩展性 嵌入U,V是静态的,并且可以预先计算和存储一组候选 项目嵌入V是静态的并且可以存储,查询嵌入通常需要在查询时计算,使得模型的服务成本更高

综上所述:

  • 矩阵分解通常是大型语料库的更好选择。它更容易扩展,查询计算量更便宜,并且不易折叠。
  • DNN模型可以更好地捕获个性化偏好,但是难以训练并且查询成本更高。DNN模型比评分的矩阵分解更可取,因为DNN模型可以使用更多特征来更好地捕获相关性。此外,DNN模型通常会出现折叠。
目录
相关文章
|
2月前
|
C++
基于Reactor模型的高性能网络库之地址篇
这段代码定义了一个 InetAddress 类,是 C++ 网络编程中用于封装 IPv4 地址和端口的常见做法。该类的主要作用是方便地表示和操作一个网络地址(IP + 端口)
154 58
|
2月前
|
网络协议 算法 Java
基于Reactor模型的高性能网络库之Tcpserver组件-上层调度器
TcpServer 是一个用于管理 TCP 连接的类,包含成员变量如事件循环(EventLoop)、连接池(ConnectionMap)和回调函数等。其主要功能包括监听新连接、设置线程池、启动服务器及处理连接事件。通过 Acceptor 接收新连接,并使用轮询算法将连接分配给子事件循环(subloop)进行读写操作。调用链从 start() 开始,经由线程池启动和 Acceptor 监听,最终由 TcpConnection 管理具体连接的事件处理。
52 2
|
2月前
基于Reactor模型的高性能网络库之Tcpconnection组件
TcpConnection 由 subLoop 管理 connfd,负责处理具体连接。它封装了连接套接字,通过 Channel 监听可读、可写、关闭、错误等
61 1
|
2月前
|
JSON 监控 网络协议
干货分享“对接的 API 总是不稳定,网络分层模型” 看电商 API 故障的本质
本文从 OSI 七层网络模型出发,深入剖析电商 API 不稳定的根本原因,涵盖物理层到应用层的典型故障与解决方案,结合阿里、京东等大厂架构,详解如何构建高稳定性的电商 API 通信体系。
|
4月前
|
域名解析 网络协议 安全
计算机网络TCP/IP四层模型
本文介绍了TCP/IP模型的四层结构及其与OSI模型的对比。网络接口层负责物理网络接口,处理MAC地址和帧传输;网络层管理IP地址和路由选择,确保数据包准确送达;传输层提供端到端通信,支持可靠(TCP)或不可靠(UDP)传输;应用层直接面向用户,提供如HTTP、FTP等服务。此外,还详细描述了数据封装与解封装过程,以及两模型在层次划分上的差异。
612 13
|
4月前
|
网络协议 中间件 网络安全
计算机网络OSI七层模型
OSI模型分为七层,各层功能明确:物理层传输比特流,数据链路层负责帧传输,网络层处理数据包路由,传输层确保端到端可靠传输,会话层管理会话,表示层负责数据格式转换与加密,应用层提供网络服务。数据在传输中经过封装与解封装过程。OSI模型优点包括标准化、模块化和互操作性,但也存在复杂性高、效率较低及实用性不足的问题,在实际中TCP/IP模型更常用。
460 10
|
2月前
基于Reactor模型的高性能网络库之Poller(EpollPoller)组件
封装底层 I/O 多路复用机制(如 epoll)的抽象类 Poller,提供统一接口支持多种实现。Poller 是一个抽象基类,定义了 Channel 管理、事件收集等核心功能,并与 EventLoop 绑定。其子类 EPollPoller 实现了基于 epoll 的具体操作,包括事件等待、Channel 更新和删除等。通过工厂方法可创建默认的 Poller 实例,实现多态调用。
189 60
|
2月前
基于Reactor模型的高性能网络库之Channel组件篇
Channel 是事件通道,它绑定某个文件描述符 fd,注册感兴趣的事件(如读/写),并在事件发生时分发给对应的回调函数。
152 60
|
2月前
|
安全 调度
基于Reactor模型的高性能网络库之核心调度器:EventLoop组件
它负责:监听事件(如 I/O 可读写、定时器)、分发事件、执行回调、管理事件源 Channel 等。
159 57
|
2月前
基于Reactor模型的高性能网络库之时间篇
是一个用于表示时间戳(精确到微秒)**的简单封装类
121 57

热门文章

最新文章