互联网智能广告系统简易流程与架构 | 架构师之路

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 很多朋友估计没有做过这一块,争取最简洁的语言描述清楚。

很多朋友估计没有做过这一块,争取最简洁的语言描述清楚。

一、业务简述

image.png

从业务上看 整个智能广告系统,主要分为:

1)业务端:广告主的广告后台

2)展现端:用户实际访问的页面

业务端,广告主主要有两类行为:

1)广告设置行为:例如设置投放计划,设置地域,类别,关键字,竞价等

2)效果查看行为:例如广告展示次数是多少,广告点击次数是多少等

展现端,用户主要也有两类行为:

1)站点浏览行为:用户浏览实际的信息,此时广告系统决定出广告主的什么广告

2)广告点击行为:此时广告系统会对广告主进行扣费

二、业务流程

下面通过一个的例子,让业务流程更直观。

步骤一:广告主在业务端投递广告

广告主登录业务端后台,进行设置:

今日投放地域是“北京-上地”

投放类别是“租房”

定向人群为“女”,“30岁以下”

需要推广的广告内容是他发布的一条“房屋出租”的帖子

竞价设置的是0.2元

单日预算是20元

这些数据,当然通过业务端存储到了数据层,即数据库和缓存里。

步骤二:用户来到了网站,进入了“北京-上地-租房”类别,广告初筛实施

用户产生了平台浏览行为,网站除了展示自然内容,还要展示广告内容。被展现的广告不能太离谱,太离谱用户也不会点击。

image.png

合适的广告,必须符合“语义相关性”,即基础检索属性(广告属性)必须符合(广告能否满足用户的需求,满足了点击率才高),这个工作是通过BS-basic search检索服务完成的。

BS从数据层检索到“北京-上地-租房”的广告帖子。

步骤三:用户属性与广告主属性匹配,广告精筛实施

步骤二中,基础属性初筛了以后,要进行更深层次的策略筛选(用户能否满足广告的需求),此例中,广告主的精准需求为:

用户性别为“女”

用户年龄为“30岁以下”

用户访问IP是“北京”

image.png

系统将初筛出来的M条广告和用户属性进行匹配筛选,又过滤掉了一部分,最后剩余N条待定广告,这些广告既满足用户的需求(初筛),这些用户也满足广告主的需求(精筛),后者是在AS-advanced search策略服务完成的。

步骤四:综合排序,并返回Top X的广告

经过步骤2和步骤3的初筛和精筛之后,待选的N条广告既能满足用户当前的需求,用户亦能满足广告主的筛选需求,但实际情况是,广告位只有3个,怎么办呢?就需要我们对N条广告进行综合打分排序(满足平台的需求,广告平台要多赚钱嘛)。

打分排序的依据是什么呢?

有人说按照竞价排序bid,出价高的打分高(这是大家对百度最大的误解,百度是cpc收费)

有人说按照CTR点击率排序,CTR高的点的人多(百度的kpi指标可不是pv)

出价高,但没人点击,广告平台没有收益;点击率高,但出价低,广告平台还是没有收益。最终应该按照广告的出价与CTR的乘积作为综合打分排序的依据,bid*CTR。

既然bid*CTR是所有广告综合打分的依据,且出价bid又是广告主事先设定好的,那么实际上,广告排序问题的核心又转向了广告CTR的预测,CTR预测是推荐系统、广告系统、搜索系统里非常重要的一部分,是一个工程,算法,业务三方结合的问题,本文就不展开讨论了。

无论如何,N条广告,根据bid*预估CTR进行综合打分排序后,返回了打分最高的3个广告(广告位只有3个)。

有些系统没有第二步骤用户属性过滤,而是将用户属性因素考虑到综合排序中。

步骤五:展现端展示了广告,用户点击了广告

展示了广告后,展现端js会上报广告展示日志,有部分用户点击了广告,服务端会记录点击日志,这些日志可以作为广告算法实施的数据源,同时,他们经过统计分析之后,会被展示给广告主,让他们能够看到自己广告的展示信息,点击信息。

这些日志(一般会实施AB测),也是算法效果好坏评估的重要依据,根据效果逐步优化改进算法。

步骤六:对广告主进行扣费

用户既然点击了广告,平台就要对投放广告的广告主进行扣费了,扣费前当然要经过反作弊系统的过滤(主要是恶意点击),扣费后信息会实时反映到数据层,费用扣光后,广告就要从数据层下线。

三、系统综述

image.png

聊完业务流程,再来看系统架构,任何脱离业务的架构设计都是耍流氓。

从系统分层架构上看,智能广告系统分为三层:

站点层:用户和广告主直接面向的网站站点

服务层:为了实现智能广告的业务逻辑,提供的通用服务,此处又主要分为四大类服务:

策略服务BS:实施广告策略,综合排序

检索服务AS:语义相关性检索

计费服务:用户点击广告时进行扣费

反作弊服务:不是每次点击都扣费,要经过反作弊,去除恶意点击(相对独立,未在架构图中画出)

数据层:用户数据,广告数据,竞价数据,日志数据等等等等

四、总结

智能广告系统的业务流程与系统架构:

1)广告主投放与设置广告

2)用户访问平台,展现合适广告

通过广告属性,进行“语义相关性”初筛,通过BS完成

通过用户属性,出价信息,点击率预测信息,进行综合打分排序筛选,通过AS完成

3)记录展现日志,点击日志,进行扣费

广告是展现,是一个:

广告满足用户需求(初筛)

用户满足广告需求(精筛)

平台利益最大化(bid*CTR综合排序)

的过程

广告的排序不是由出价(bid)决定的,而是由出价(bid)*点击率(ctr)决定的。

点击率(ctr)是一个未来将要发生的行为,智能广告系统的核心与难点是点击率预测。

==【完】==

相关实践学习
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
目录
相关文章
|
2月前
|
数据采集 机器学习/深度学习 运维
量化合约系统开发架构入门
量化合约系统核心在于数据、策略、风控与执行四大模块的协同,构建从数据到决策再到执行的闭环工作流。强调可追溯、可复现与可观测性,避免常见误区如重回测轻验证、忽视数据质量或滞后风控。初学者应以MVP为起点,结合回测框架与实时风控实践,逐步迭代。详见相关入门与实战资料。
|
2月前
|
前端开发 JavaScript BI
如何开发车辆管理系统中的车务管理板块(附架构图+流程图+代码参考)
本文介绍了中小企业如何通过车务管理模块提升车辆管理效率。许多企业在管理车辆时仍依赖人工流程,导致违章处理延误、年检过期、维修费用虚高等问题频发。将这些流程数字化,可显著降低合规风险、提升维修追溯性、优化调度与资产利用率。文章详细介绍了车务管理模块的功能清单、数据模型、系统架构、API与前端设计、开发技巧与落地建议,以及实现效果与验收标准。同时提供了数据库建表SQL、后端Node.js/TypeScript代码示例与前端React表单设计参考,帮助企业快速搭建并上线系统,实现合规与成本控制的双重优化。
|
2月前
|
存储 消息中间件 Kafka
Confluent 首席架构师万字剖析 Apache Fluss(二):核心架构
原文:https://jack-vanlightly.com/blog/2025/9/2/understanding-apache-fluss 作者:Jack Vanlightly 翻译:Wayne Wang@腾讯 译注:Jack Vanlightly 是一位专注于数据系统底层架构的知名技术博主,他的文章以篇幅长、细节丰富而闻名。目前 Jack 就职于 Confluent,担任首席技术架构师,因此这篇 Fluss 深度分析文章,具备一定的客观参考意义。译文拆成了三篇文章,本文是第二篇。
286 19
|
3月前
|
人工智能 监控 测试技术
告别只会写提示词:构建生产级LLM系统的完整架构图​
本文系统梳理了从提示词到生产级LLM产品的八大核心能力:提示词工程、上下文工程、微调、RAG、智能体开发、部署、优化与可观测性,助你构建可落地、可迭代的AI产品体系。
512 51
|
2月前
|
机器学习/深度学习 人工智能 缓存
面向边缘通用智能的多大语言模型系统:架构、信任与编排——论文阅读
本文提出面向边缘通用智能的多大语言模型(Multi-LLM)系统,通过协同架构、信任机制与动态编排,突破传统边缘AI的局限。融合合作、竞争与集成三种范式,结合模型压缩、分布式推理与上下文优化技术,实现高效、可靠、低延迟的边缘智能,推动复杂场景下的泛化与自主决策能力。
241 3
面向边缘通用智能的多大语言模型系统:架构、信任与编排——论文阅读
|
2月前
|
人工智能 自然语言处理 安全
AI助教系统:基于大模型与智能体架构的新一代教育技术引擎
AI助教系统融合大语言模型、教育知识图谱、多模态交互与智能体架构,实现精准学情诊断、个性化辅导与主动教学。支持图文语音输入,本地化部署保障隐私,重构“教、学、评、辅”全链路,推动因材施教落地,助力教育数字化转型。(238字)
|
3月前
|
消息中间件 数据采集 NoSQL
秒级行情推送系统实战:从触发、采集到入库的端到端架构
本文设计了一套秒级实时行情推送系统,涵盖触发、采集、缓冲、入库与推送五层架构,结合动态代理IP、Kafka/Redis缓冲及WebSocket推送,实现金融数据低延迟、高并发处理,适用于股票、数字货币等实时行情场景。
312 3
秒级行情推送系统实战:从触发、采集到入库的端到端架构
|
2月前
|
监控 数据可视化 数据库
低代码的系统化演进:从工具逻辑到平台架构的技术解读
低代码正从开发工具演变为支撑企业架构的智能平台,融合可视化开发、AI引擎与开放生态,实现高效构建、自动化运维与跨场景协同,推动数字化转型迈向智能化、系统化新阶段。
|
2月前
|
存储 人工智能 搜索推荐
拔俗AI助教系统:基于大模型与智能体架构的新一代教育技术引擎
AI助教融合大语言模型、教育知识图谱、多模态感知与智能体技术,重构“教、学、评、辅”全链路。通过微调LLM、精准诊断错因、多模态交互与自主任务规划,实现个性化教学。轻量化部署与隐私保护设计保障落地安全,未来将向情感感知与教育深度协同演进。(238字)
|
2月前
|
机器学习/深度学习 人工智能 搜索推荐
拔俗AI学伴智能体系统:基于大模型与智能体架构的下一代个性化学习引擎
AI学伴智能体系统融合大模型、多模态理解与自主决策,打造具备思考能力的个性化学习伙伴。通过动态推理、长期记忆、任务规划与教学逻辑优化,实现千人千面的自适应教育,助力因材施教落地,推动教育公平与效率双提升。(238字)

热门文章

最新文章